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Abstract
It is commonly recognized that the observed increase in global mean annual air temperature is strongly related to the

increase in global carbon dioxide concentration C, and that both these variables are related to global development. It

remains, however, unclear the degree to which local mean annual urban air temperature T is affected by local variables

such as annual precipitation depth P and urban area extent A. This study assumes that A is a proxy of local development and

C is a proxy of global development and investigates the commingled effects of A, P, and C on T by using long-term annual

data observed over the years 1881–2019 from the Modena Observatory in Italy. Linear relationships between T, C and

A are found to be spurious since all these series have a monotonic increasing trend with time. Parametric analytic models

like logistic functions are found to lack flexibility. Smoothing splines can only give insights into the strength of the

relationships but not on their shape defining the functional relationship between variables. Advanced nonlinear models like

generalized additive models, instead, are found to combine flexibility in a parametric form, and appear therefore to be

suitable models for explaining the complex relationships between A, P, and C on T. The different models are evaluated

using traditional goodness of fit statistics like R2, AIC, BIC, and a new index of relation IR which is introduced to jointly

evaluate the goodness-of-fit of relationships between variables that may either be dependent or independent.

Keywords Generalized additive models � Long-term site-based data � Urban air temperature � CO2 concentration �
Urban area extent � Precipitation � Local and global development

1 Introduction

Long-term data reported in historical archives of astro-

nomical observatories are important to understand the

long-term effects of local and global variables on urban

climate (e.g., Burt 2023). Observed increase in mean

annual urban air temperature T is commonly recognized to

be associated with the observed increase of global carbon

dioxide (CO2) concentration C through the greenhouse

effect (Jones et al. 1999; Jouzel et al. 2007; Luthi et al.

2008; Milly et al. 2008; Rehman et al. 2021). As air tem-

perature is often measured in towns or cities displaying an

urban area extent A that increases in time, some researchers

have attempted to assess whether the increase of T is in part

due to the increase of A (Karl et al. 1988; Kalnay and Kay

2003). At least in theory, partitioning at the land surface of

net (incoming minus reflected or absorbed) shortwave and

longwave radiation into sensible and latent heat fluxes is

affected by land use change resulting from urbanization

(Gao et al. 2019). On a broader scope, however, it remains

unclear the degree to which climate local variables such as

annual precipitation depth P may affect T, in addition to
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A and C. Many recent studies examining climate change

focus on the causes and effects of local CO2 emission (see,

e.g., Wang et al. 2019; Cai and Cao 2020; Mehmood et al.

2021; Huang and Matsumoto 2021; Wang and Wang 2021)

or on the relationship between temperature and precipita-

tion (see, e.g., Regoto et al. 2021; Daramola and Xu 2022;

Li et al. 2023). Several studies were performed on local

effects of global warming (Zou et al. 2020; Guan et al.

2021; Skytt et al. 2021). The aim of this work is to consider

the commingled effects of local climate and environmental

variables such as A and P and global CO2 concentration

C on local air temperature T.

Even though there is general agreement that the annual

mean temperature of Earth’s surface has increased during

the last century, it is obvious that this warming is quite

inhomogeneous in various respects, like spatial and sea-

sonal variability and environmental local influences. Sur-

face modification arising from urbanization result in a

tendency for urban areas to exhibit elevated temperatures

relative to nonurbanized surroundings areas, a phenomenon

called ‘‘urban area heat island’’ (Krayenhoff and Voogt

2010). Urban temperature depends on local scale and

microscale processes in addition to the larger scale (e.g.,

synoptic) weather patterns that typically drive heat waves.

In this context, it appears of relevance to study the sensi-

tivity of surface air temperature to changes in urbanization,

in addition to changes in meteorological condition, such as

precipitation, and global CO2. Understanding causation

between environmental variables is particularly challeng-

ing for two reasons. First, linear models may be spurious

due to the presence of similar trends in the time series.

Secondly, each variable may be either dependent on other

variables or one of the independent variables (Pearl 2000).

For instance, changes in T may affect P and, conversely,

P may cause changes in T. Granger’s (1969) causality can

only be tested for measuring the ability to predict the future

values of a time series using prior values of the other time

series, but not for measuring the ability to cause changes of

a value at the same time. In the present study, the statistical

relationships between annual values of T, P, A, and C are

investigated through advanced statistical nonlinear models

and models are compared both with traditional goodness-

of-fit statistics and a new index here introduced to assess

the strength of the relationships between variables con-

sidering that the same variable may be either the dependent

or the independent one.

The long series of T (from 1861 to 2019) and P (from

1830 to 2019) recorded from the Modena Observatory in

Italy are combined with data of A observed or recon-

structed for Modena (from 1881 to 2019), and data of

C observed in ice cores (from 1832 to 1958) and in Mauna

Loa, Hawaii (from 1959 to 2019), so that a complete data

set is obtained for the period from 1881 to 2019 (Etheridge

et al. 1998; National Oceanic and Atmospheric Adminis-

tration 2021). Although the data analyzed cannot provide a

comprehensive global picture of how local and global

developments and climatic variables affect air tempera-

ture, they can show long-term relationships between T, P,

A, and C that cannot be found in any global investigation

due to the scarcity of long observed (rather than simulated)

time series. Local series of air temperature and precipita-

tion depth analyzed are particularly valuable since

obtained from uninterrupted daily observations collected

from 01-01-1861 to 12-31-2019 at the Modena Geophys-

ical Observatory in Italy. Metadata describing the history

of the station are still available, even for the early period

(Corradini 2014). Long term in situ observations

(160 years per series) are not affected by important inho-

mogeneities caused by changes in instrumentations, station

moves, different observing practices like, for instance,

different formulas for calculating the minimum and the

maximum or different observations time. As also high-

lighted by Boccolari and Malmusi (2013), the Modena

time series have the advantages that sensors have been

positioned in the same location, in the Eastern tower of the

Ducal Palace of Modena, apart from a short period during

the Second World War between 1944 and 1945. Sensors

have been always controlled by at least one operator.

Starting from 1985, meteorological observations are per-

formed daily with the use of automatic equipment. A

change in the hygrothermograph (an instrument used to

simultaneously measure and record humidity and temper-

ature levels in the atmosphere over time) has been done in

1869, before the starting year (1881) of the series con-

sidered in the present study. Variability is due to changes

in the local and global environment and can be related to

global CO2 as well as to variations in the local develop-

ment. A detailed wavelet analysis of these two series is

reported in Morlini et al. (2023). The wavelet analysis

shows that the scale of variation is different for tempera-

ture and precipitation and that the behavior of the tem-

perature range values diverges from the behavior of the

minimum and maximum values. The timescale of impor-

tant changes in the long-term trend is, however, similar.

Results also suggest that the main mode of variability is

persistent through time in the series of temperature max-

imum, minimum and range, but not in precipitation depth.

This is a clear evidence of climate change. In the present

study, the local area extent A of Modena is assumed to be

an indicator of local development, the global CO2 con-

centration C is assumed to be an indicator of global

development, and the relationship between A, P, and C on

T is investigated. The paper is organized as follows: data

are methods are described in Sect. 2, the statistical anal-

yses and results are illustrated in Sect. 3, discussion and

conclusions are reported in Sect. 4.
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2 Materials and methods

The annual time series of mean urban air temperature T and

cumulative precipitation depth P are obtained from unin-

terrupted daily observations collected from 1861 and from

1830, respectively, at the Geophysical Observatory of the

University of Modena and Reggio Emilia (latitude

44.6474�N, longitude 10.9293�E, elevation 76.50 m asl),

Modena, Italy. The series are illustrated in detail in Figs. 1

and 2. Figure 1 reports minimum, maximum, and mean

values of daily temperature DT, (plots a and b), monthly

temperature MT (plot c), and annual temperature AT (plot

d). Solid lines indicate the mean values and gray bands

indicate minimum and maximum values. To give insights

into the temperature pattern, the daily values are shown in

plot b for the period from 2017 to 2019. Figure 2 reports

values of daily precipitation depth DPD (plots a and b),

monthly precipitation depth MPD (plot c) and annual

precipitation depth APD (plot d). To give insights into the

precipitation pattern, the daily values are shown in plot b

for the period from 2017 to 2019. Observations of urban

area extent A for Modena are available for years 1881,

1940, 1961, 1971, 1981, 1998, 2000, and 2002–2019.

Cubic spline interpolation is applied to obtain recon-

structed values of A for the other years in the period from

1881 to 2019. Global CO2 concentration C estimated from

ice cores, from 1832 to 1958, and observed at the Mauna

Loa Observatory (latitude 19.5362�N, longitude

155.5763�W, elevation 3397.00 m asl), Hawaii, from 1959,

are then combined to provide the annual time series for

C in the period from 1881 to 2019. The CO2 concentration

observed in Mauna Loa is used when available and the CO2

concentration estimated from ice cores as a second possible

source to complete the time series over the period

1881–2019. This is assumed to be a better choice than

using available CO2 concentration from ice cores over the
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Fig. 1 Minimum, maximum, and mean values of daily temperature (plots a and b), monthly temperature (plot c) and annual temperature (plot d).

Solid lines indicate the mean values and gray bands indicate minimum and maximum values

Stochastic Environmental Research and Risk Assessment (2024) 38:1163–1178 1165

123



period 1881–2019 by neglecting the most reliable data

when available.

The complete data set including 139 annual values of T,

P, A and C observed or reconstructed in the period from

1881 to 2019 is shown in the scatter plot matrix reported in

Fig. 3. To find symmetric and asymmetric relationships

between variables, the representation of the series through

a scatter plot matrix is particularly useful. Analyzing plots

we can see that local temperature, local urbanization and

global CO2 are indeed pairwise related while local pre-

cipitation seems to be a variable independent from the

other ones. This may be also due to the presence of extreme

values (Fig. 1) and the heavy tail distribution, typical of

rainfall time series (Fawcett and Walshaw 2007, 2012;

Buritica and Naveau 2022). Correlation coefficient is dif-

ferent from zero with a significant level a = 0.001 for

T and A (rTA = 0.73, p value\ 0.0001), T and C (rTC-

= 0.81, p value\ 0.0001), C and A (rCA = 0.96,

p value\ 0.0001), but not for P and A (rPA = 0.08,

p value = 0.31), P and C (rPC = 0.09, p value\ 0.36),

P and T (rPT = - 0.03, p value = 0.70). These values

suggest a strong linear relation between local temperature

and local urbanization, local temperature and global CO2

and a nearly perfect linear relation between local urban-

ization and global CO2. They also suggest that precipitation

depth is uncorrelated with the other variables. However,

while global CO2, local temperature and local urbanization

show similar temporal patterns, local precipitation depth

has a different temporal annual behavior. Even though the

analysis of the trends of the different series is beyond the

aim of this work, the trend impacts on the analysis of the

relationships between variables in the linear case. In fact, if

two variables have the same monotonic downward or

upward trend, then linear correlation may be spurious.

The statistical assessment of the presence or absence of

a monotonic trend, inhomogeneity, and change points, has

been made by performing several nonparametric tests using

XLSTAT (Addinsoft 2023). Summary results of the Mann–
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Fig. 2 Values of daily precipitation depth (plots a and b), monthly precipitation depth (plot c), and annual precipitation depth (plot d)
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Kendall (MK) test (Mann 1945; Kendal 1975; Gilbert

1987), von Neuman’s test (von Neuman 1941) and KPSS

test (Kwiatkowski et al. 1992) are reported in Table 1. The

MK and the von Neuman tests do not require that the

measurements be normally distributed or that the trend, if

present, is linear. The null hypothesis is that the data come

from a population with independent realizations and are

identically distributed. The alternative hypothesis for the

MK test is that the data follow a monotonic trend, for the

von Neuman’s test is that observations are not randomly

distributed and are correlated. For the von Neuman’s test

the p value is computed using 10,000 Monte Carlo simu-

lations. The Sen’s slope (Sen 1968; Hipel and McLeod

1994), indicates the linear rate of change in the MK test.

The KPSS test is used for testing the null hypothesis that

the time series is stationary around a deterministic trend

(i.e., trend-stationary) against the alternative of a unit root.

Contrary to most unit root tests, the presence of a unit root
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Fig. 3 Scatter plot matrix illustrating the absolute frequency distributions of variables T, P, A, and C observed from 1881 to 2019, namely the

number of occurrences n over discrete intervals (diagonal plots) and pairwise relationships (plots outside the diagonal)

Table 1 Summary results of the

Mann–Kendall’s, von

Neuman’s and KPSS trend tests

Series Mann–Kendall trend test Von Neuman test KPSS trend test

Kendall’s tau p value Sen’s slope N p value Eta observed p value

T (�C) 0.435 \ 0.0001 0.014 0.428 \ 0.0001 0.620 \ 0.0001

P (mm) 0.017 0.769 0.106 1.854 0.198 0.164 0.146

A (km2) 0.923 \ 0.0001 0.324 0.001 \ 0.0001 1.114 \ 0.0001

C (ppm) 0.993 \ 0.0001 0.631 0.001 \ 0.0001 1.086 \ 0.0001
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is not the null hypothesis but the alternative. Additionally,

in the KPSS test, the absence of a unit root is not a proof of

stationarity but, by design, of trend-stationarity. This is an

important distinction since it is possible for a time series to

be non-stationary, have no unit root yet be trend stationary.

All tests show departures from the first-order stationarity in

the T, A, C series and, conversely, do not detect a signifi-

cant trend in P. This last result agrees with the absence of a

univocal direction of trend (or lack thereof) in annual total

precipitation depth in Italy shown in the study of Caporali

et al. (2021). The MK test also indicates that the trend in T,

A and C is positive.

Summary results of the Pettitt’s (Pettitt 1979; Ver-

straeten et al. 2006), Buishand’s (Buishand 1982, 1984),

and SNHT (Alexandersson 1986) tests for a shift in the

central tendency are reported in Table 2. In these tests, the

null hypothesis is that the observations follow one or more

distributions that have the same location parameter l (no

change), against the alternative that a change point t exists,

and the time series have a location parameter l1 before the

change point t and a location parameter l2 after the change

point. The p value is computed using 10,000 Monte Carlo

simulations.

These three tests also support the hypothesis of non-

stationarity of T, A, C and first-order stationarity of the

P series. Even though the change points identified by the

tests are different, they however agree in rejecting the null

hypothesis of a constant location parameter over time in all

series except the P one. It is interesting noting that, for

A and C, the change points identified by the Pettitt’s test are

identical and differ only 5 years in the Buishand’s test and

10 years in the SNHT test. This finding supports the

hypothesis of a very similar pattern of the local urbaniza-

tion in Modena and the global CO2 and the necessity to use

nonlinear bivariate relationships to avoid spurious results

(Yule 1926; Granger et al. 2001). It can also be noticed that

the performed tests do not reveal abrupt changes when the

CO2 concentration observed in Mauna Loa (1881–1958) is

introduced in preference to CO2 concentration estimated

from ice cores (1959–2019). In the presented study, tests

for change point detection are primarily carried out to

provide a measure of the robustness of the results from

previous three tests, namely Mann–Kendall, Von Neuman,

and KPSS trend tests (e.g., Ferguson and Villarini 2021).

Since all tests agree in rejecting the null hypothesis for T,

A and C and in rejecting the null hypothesis for P, there is

consistency in the results. To assess a time interval for the

change point in the three inhomogeneous series, it must be

noted that, although the Buishand, Pettitt and SNHT tests

for change point detection have in common the charac-

teristic of estimating simultaneously the presence of abrupt

changes and linear trend, they however differ in terms of

distributional assumptions. The Buishand test is particu-

larly suitable to detect breaks near the beginning and the

end of a series relatively easily, whereas the Pettitt test is

more sensitive to breaks in the middle of a time series

(Hawkins 1977). The Buishand and the SNHT tests assume

that the values are normally distributed, but the Pettitt test

does not. The reason that the Pettitt test does not require

such an assumption is that this test is based on the ranks of

the elements of a series rather than on the values them-

selves. The ranking approach of the Pettitt test also implies

that it is less sensitive to outliers than the other tests. It is

common to have different estimated break points when

applying all tests, especially in climatic or hydrological

time series and especially in long time series (see, e.g.,

Ferguson and Villarini 2021; Winjngaard et al. 2003). With

respect to the Buishand test, the change points detected by

the SNHT test agree within three years in the T time series,

within six years in the A time series and within eleven years

in the C time series. These are reasonable ranges sug-

gesting that a break in P fell around 1993–1996, in A

within the period 1965–1971, and in C within the period

1970–1981 (Winjngaard et al. 2003). Results confirm that

the tests are not robust to the distributional assumptions.

Examining the location parameters before and after the

change points, it can be observed for the Buishand and

SNHT tests that the distance between the two values is

higher with respect to the same distance calculated for the

Pettitt test, and this is reasonably because Pettit test con-

siders ranks rather than values.

Spuriousness of the correlation coefficients is also con-

firmed by the analysis of the correlation coefficients com-

puted for first order differences DT, DA, DC, DP. If two

Table 2 Summary results of the Pettitt, Buishand, and SNHT change point detection tests

Series Pettitt’s test Buishnad’s test SNHT test

K p value t l1 l2 U p value t l1 l2 T p value t l1 l2

T (�C) 3086 \ 0.0001 1965 13.2 14.4 44.9 \ 0.0001 1993 13.3 15.3 97.51 \ 0.0001 1996 13.3 15.5

P (mm) 932 0.468 1988 641 641 11.2 0.270 1988 641 641 5.21 0.329 1988 641 641

A (km2) 4830 \ 0.0001 1949 4.3 28.3 62.5 \ 0.0001 1965 5.7 33.2 119.9 \ 0.0001 1971 6.6 35.1

C (ppm) 4830 \ 0.0001 1949 301 350 57.5 \ 0.0001 1970 305 364 109.2 \ 0.0001 1981 308 373
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variables are correlated, their changes are also correlated.

This is for instance a foundation in cointegration studies,

and the Engel-Granger approach, where if a long-run

relationship between two variables exists, there is also a

short-term relationship. The correlation coefficient com-

puted for first order differences is different from zero with

a significant level a = 0.001 for DT and DP (rTP = - 0.32,

p value\ 0.0001), DA and DC (rAC = 0.30,

p value = 0.000) but not for the other couples of variables.

These results suggest the existence of a direct short-term

relationship between A and C and an inverse short-term

linear relationship between P and T.

2.1 Asymmetric relationships with temperature
as dependent variable

2.1.1 Analysis with a single explicative variable

We first evaluate and compare asymmetric pairwise rela-

tionships considering the temperature as the dependent

variable and, in turn, the local urbanization, the global CO2

and the local precipitation depth as the explicative variable.

For studying these pairwise asymmetric relationships, we

use both parametric and nonparametric models, namely

logistic function and smoothing splines, the first one con-

veying information in the values of the estimated param-

eters, the second ones being more flexible. Let {xi, yi,

I = 1, …, n} be a set of observations, modeled by the

relation yi ¼ f xið Þ þ ei, where ei are independent zero

mean random variables. Let byi ¼ f ðxiÞ be the predicted

values. The 4-parameter logistic function is defined as the

following function

f xið Þ ¼ d þ a� dð Þ= 1 þ xi=cð Þb
h i

ð1Þ

minimizing the sum of squares error SSE =

. Parameter a is the minimum asymptote, b is the Hill’s

slope, c is the inflection point and d is the maximum

asymptote. The routine L4P available for Matlab is used to

fit the function. We compare logistic models with a dif-

ferent explicative variable considering the complement to

one of coefficient of determination R2. Exploiting the

property that the average value y of observations yi (I = 1,

…, n) is equal to the average value y of predicted values byi
(I = 1, …, n), we use the following normalized sum of

squares error (NSE), giving the percentage of variability of

the dependent variable not explained by the relationship

with the predictor variable:

NSE ¼
Xn

i¼1
yi � byið Þ2=

Xn

i¼1
yi � yð Þ2 ¼ 1 � R2 ð2Þ

Cubic smoothing splines (Reinsch 1967; Wahba 1990;

De Bor 2001) encompass a family of widely used nonlinear

semiparametric flexible functions. They are the functions f

(xi), over the class of twice differentiable functions, mini-

mizing the quantity.

S
Xn

i¼1

byi � yi
wi

� �2

þ ð1 � SÞ
Z

f 00ðxiÞð Þ2
dx; ð3Þ

where S is a smoothing factor in [0 1] and wi are weights

controlling the extent of smoothing of each point. With the

smoothing factor S ranging from 0 to 1, the fitting function

range from the least squares straight-line fit to the natural

cubic interpolant to the given data. We implement splines

with S = 0.2, 0.4, 0.6, 0.8, 1.0. and with wi = 1 for I = 1, …,

n. We compare models with the same explicative variables

and with a different explicative variable considering the

Aikake Information Criterion (AIC) and the Bayesian

Information Criterion (BIC) (Burnham et al. 2011; Findely

1991; McQuarrie and Tsai 1998; Stoica and Selen 2004;

Schwarz 1978). These criteria estimate the prediction error

and thereby the relative quality of statistical model fitting

for a given set of data. They are founded on information

theory and estimate the relative amount of information lost

by a given model: the less information a model loses, the

higher is the fitting of that model. In estimating the amount

of information lost, AIC and BIC deal with the trade-off

between the goodness of fit and the complexity of the

model, given by the number of parameters. In terms of the

sum of squares error, AIC and BIC can be written as

AIC ¼ nln
Xn

i¼1
yi � byið Þ2=n

� �

þ 2k ð4Þ

and

BIC ¼ nln
Xn

i¼1
yi � byið Þ2=n

� �

þ klnðnÞ ð5Þ

where k is the number of parameters of the model. The

penalty term klnðnÞ in BIC is larger than the penalty term

in AIC, 2k, for n[ 7 (Stoica and Selen 2004). Differently

from the sum of squares error, these errors are used in

flexible models to prevent overfitting.

2.1.2 Multivariate analysis

We use generalized additive models (GAM) to study T as a

function of P, A and C. Considering m explicative variables

X1, X2, …, Xm, equation describing GAM is

g yið Þ ¼ f0 þ f1 x1ið Þ þ . . .þ fm xmið Þ; ð6Þ

where g(�) is a link function, f0 is a constant, fi, I = 1, …, m,

are shape functions. GAM are particularly suitable to

describe complex nonlinear relationships between observed

geophysical quantities since they can capture the signal and

filter the noise in observed data (Hastie and Tibshirani

1986, 1990). Moreover, in GAM we may separate and

compare the contribution of each explicative variable and
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see the effect of each predictor on the prediction. The

routine ‘‘fitrgam’’ available in Matlab 2011b is used in the

present study (Lou et al. 2012, 2013) and contributions to

GAM predictions are determined by using the routine

‘‘plotlocaleffects.’’ Since the link function g(�) is set equal

to the identity link function, the GAM used can more

specifically be denoted as additive models (Lou et al.

2012). GAM implemented in Matlab incorporate non-

parametric shape functions like trees and bagged trees with

a large, undetermined number of parameters. For this rea-

son, AIC and BIC cannot be computed for these models.

Models are fitted with the gradient boosting algorithm

(Friedman 2001, 2002) and overfitting is controlled

through cross validation. Exploiting the property that the

average value of observations yi (I = 1, …, n) is equal to

the average value of predicted values byi (I = 1, …, n) to

compare different models we use the NSE defined in (2).

2.2 Pairwise asymmetric relationships
with unknown dependent variable

We propose in this section a new data driven technique for

evaluating the strength of the asymmetric relationship between

two variables when both variables may either be the dependent

or the independent variable. The peculiarity of most of the

atmospheric variables and human-driven related variables is

that it is not clear, a priori, the direction of causality. For

instance, air temperature may cause changes in precipitation

depth and, conversely, precipitation depth may cause change in

air temperature. Moreover, local urbanization may cause

changes in the global environment if the global environment

may cause change in local urbanization. This peculiarity

especially occurs when we are not considering lagged variables

since we are rather interested in yearly values.

We use generalized additive models (GAM) to study the

relations byi ¼ f ðxiÞ with Y = T, P, A, C and X = T, P, A, C.

For each model, we compute the NSE, which can be used to

compare the fitting also among models with a different

dependent variable Y. We compute the NSE for each pair of

variables, indicating by (K | Z) the model in which K is the

dependent variable and Z the explicative variable and by (Z |

K) the model in which Z is the dependent variable and K the

explicative variable. Note that the NSE for the model (Z | Z)

or (K | K) may not be exactly equal to zero, as nonlinear

functions used in GAM may not fit exactly linear functions.

To evaluate the strength of the relationship between K and Z,

supposing the direction of causality is not known a priori, we

introduce the following index of relationship IR:

IR K; Zð Þ ¼ 1 þ NSE KjKð ÞNSE ZjZð Þ � NSE KjZð ÞNSE ZjKð Þd e
ð7Þ

The index as the following properties:

1. NSE(K | K) NSE (Z | Z) – NSE(K | Z) NSE(Z | K) is the

determinant of the 2 9 2 matrix having rows [NSE(K |

K), NSE(K | Z)] and [NSE(Z | K), NSE (Z | Z)], that is

IRðK; ZÞ ¼ 1 þ NSEðKjKÞNSEðKjZÞNSEðZjKÞNSEðZjZÞj j

.

2. IR is a symmetric index, i.e., IR (Z, K) = IR (K,Z).

3. IR ranges from 0 to 1: when IR = 0 there is no

relationship between K and Z, when IR = 1, there is the

strongest interrelationship between K and Z that can be

described by the model used.

4. IR (K,Z) = 1 – [R2(K | K) R2(Z | Z) – R2(K | Z) R2(Z |

K)] when the average value of observations yi (I = 1,

…, n) is equal to the average of values byi (i = 1, …,

n) predicted by the model.

Just like the determinant of the variance–covariance

matrix of a data set is referred to as the generalized vari-

ance of the data set (Anderson 2003; Wilks 1932) since the

determinant generally gives the magnitude of a matrix

transformation and, in case of variances and covariances, it

gives the measure of magnitude of how much the variables

vary with each other, the determinant of the matrix having

rows [NSE(K | K), NSE (K | Z)] and [NSE(Z | K), NSE (Z |

Z)] gives the measure of magnitude of how much the

models make errors with each other. Differently from the

variance–covariance matrix, the matrix having rows

[NSE(K | K), NSE (K | Z)] and [NSE(Z | K), NSE (Z | Z)] is

not symmetric when nonlinear models are evaluated and

the determinant is zero or negative.

In case of comparing, an IR for a couple of variables (K,

Z) bigger than the IR for another couple of variables

indicates that the first two variables have a stronger causal

relationship than the other two. We can consider IR a

normalized, symmetric, comparable index based on

asymmetric relationship analysis. Since symmetric analy-

ses are unsuitable to determine causation and causation is

defined a priori in asymmetric (regression) analysis, both

the possible dependencies of K on Z and of Z on K are used

to define IR (K,Z) so that it can be used when causation

between K and Z is a priori unknown.

3 Analysis and results

3.1 Smoothing splines and logistic functions

Time series of mean annual air temperature T observed in

Modena from 1881 to 2019 is plotted with time series

urban area extent A of Modena in Fig. 4a, and with time

series of CO2 concentration C observed in ice cores and in

Mauna Loa in Fig. 4b. Figure 4c and d show values of

T estimated by some nonlinear functions of A and C,
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respectively. In Fig. 4 are reported cubic smoothing splines

with S = 1.0 and S = 0.2 and the 4-parameter logistic

function LF. Table 3 reports the NSE error (2) for the

estimated LF functions (1) and the values of the parameters

(results of the 5-parameters logistic functions are not

reported since they are very similar for the values of the

parameter and for the goodness of fit).

The LF function has good and very similar fit when

C and A are used as explicative variables, and a very poor

fit when P is used as predictor. This indicates that A and

C convey the same information in predicting T and have

the same strength of relationship with T, while P seems

unrelated to T. The C-T curve is steeper than the A-T curve.

While the estimated minimum temperature for a zero urban

area extent and a zero CO2 global emission is the same

(13 �C) the maximum temperature estimated for an infinite

value of A is 13,950 �C and the maximum temperature

estimated for an infinite value of C is 16.01 �C. The

inflection point, that is the value of the dependent variable

for which the curve change direction or the value for which

the estimated temperature is nearly half of the maximum

value), is 113.7 km2 for A and 367.3 ppm for C. Even

though the estimated values of some of the parameters are

implausible, due to the lack of flexibility of this function,

we may get some insights into the comparison of the C-T

and the A-T relationships. The Hill’s slope suggests that the

first one is steeper than the second one. The maximum

asymptote suggests that, while temperature continues

increasing with increases in the urban area extent, it stops

increasing after a certain value of CO2. Moreover, while

half of the maximum possible value has been reached in

relation to C, it has not yet been reached in relation to A.

Table 4 reports AIC and BIC for the smoothing splines.

As expected, the interpolating splines (SS with S = 1)

overfit the data. The best fit for each dependent variable is

given by smoothing splines with parameter S = 0.2.

Comparing information criteria, we see that variable A is a
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Fig. 4 Time series of T and A

(plot a), T and C (plot b),

estimated values of T

considering A (plot c) and C

(plot d) as dependent variable

using smoothing splines (SS)

with parameters 1 and 0.2 and

the 4-parameter logistic

function (LF)

Table 3 Estimated parameters of the 4-parameter logistic function

and NSE

Explicative variable

A C P

a 13.25 �C 13.22 �C 14.83 �C
b 8.50 �C 33.44 �C 0.32 �C
c 113.7 km2 367.3 ppm 425 mm

d 13,950 �C 16.01 �C 12.64 �C
NSE 0.273 0.0.275 0.998
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slightly better predictor than C. P, as expected, is found to

be the worst predictor. Since the functions are nonpara-

metric, we cannot get insights into the relationships

between variables, but we can only compare the goodness

of fit given the strength of the relationships. Splines support

results obtained by the LF function, indicating that P is

unrelated to T and that A and C convey the same infor-

mation in predicting T.

Possible relationships between the examined variables

and the North Atlantic Oscillation (NAO) teleconnection

index are also investigated in the present study. The NAO

index is a measure of the atmospheric pressure difference

between the Icelandic Low and the Azores High in the

North Atlantic region. It is a climate index that may

influence weather patterns in the Northern Hemisphere,

particularly in Europe and North America. The NAO can

be in a positive or negative phase, affecting the strength

and position of the jet stream, which in turn influences

weather patterns (Barnston and Livezey 1987). It is found,

however, that the NAO index is not related with T and with

P. In addition, using the NAO index instead of P does not

give improved predictions of T (Appendix 1).

3.2 Generalized additive models

Multivariate relationships are evaluated implementing

GAM for predicting T as a function of sets of two variables

and as a function of all three predictors. Models are com-

pared considering the NSE error defined in (2). Predicted

and observed T values, as well as the NSE errors, are

shown in Fig. 5: plot a reports results with X = [A, C], plot

b with X = [P, C], plot c with X = [P, A], and plot d with

X = [P, A, C].

For models with three predictors, separate contributions

to the predicted T are evaluated and reported in Fig. 6.

Equation (6) can be written as T = f0 ? f1(P) ? f2(-

A) ? f3(C), where f0 = 13.667 �C, f1(P) ranges from

- 1.229 to 0.573 �C, f2(A) ranges from - 0.836 to

1.281 �C, and f3(C) ranges from - 0.686 to 1.113 �C.

Over the entire observation period 1881–2019, the

constant value f0 is equal to 13.667 �C and the mean values

(MV) of f1(P), f2(A) and f3(C) are equal to zero. The MV of

f1(P), f2(A) and f3(C) are found to vary from - 0.018 to

0.011 �C (? 0.029 �C), from - 0.166 to 0.378 �C
(? 0.544 �C), and from - 0.343 to 0.408 �C
(? 0.751 �C), respectively, when the 50-year periods of

time 1881–1930 and 1970–2019 are compared. Results

show that the most accurate couple of predictors is X = [P,

C]. Slightly less accurate predictions are obtained with

X = [P, A], indicating that A and C convey essentially the

same information content. The most accurate predictions of

T are obtained when all the three predictors X = [P, A,

C] are used, confirming the expected greater flexibility of

the GAM with three predictor variables. A relatively minor

improvement is obtained when X = [P, A, C] is used in

preference to X = [P, C] with respect to the improvement

in prediction accuracy obtained by using X = [P, C] in

preference to X = [A, C]. Therefore, although P is poorly

related to other variables when considered singly, it con-

tributes to improve predictions when considered in com-

bination with other predictor variables related to local or

global development. Since T and P display different, rela-

tively unsmoothed paths with respect to A and C, P may

therefore convey additional information for the prediction

of T with respect to the one conveyed by A and C. Analysis

of GAM predictions of T obtained when X = [P, A,

C] confirms that over the 139-year period of time from

1881 to 2019 fluctuations of T around the mean value

f0 = 13.667 �C are more importantly due to predictors

A and C than to predictor P. Variations over time of these

contributions indicate that urban area extent A has played a

slightly less important role than C in the last 50 years.

GAM predictions obtained for any couple of variables

are shown in the scatter plot matrix of Fig. 7. In each plot,

the related NSE is reported. Diagonal plots show the pre-

diction of a variable given the same variable as the pre-

dictor. As outlined before, the NSE may not be exactly

equal to zero in these cases since nonlinear function may

not fit exactly a perfect linear relation. Table 5 reports the

IR defined in Eq. (7). Results show that the most accurate

predictions of T are obtained by using C or A as a single

predictor, indifferently. They also surprisingly indicate that

there is a perfect nonlinear relationship when considering

A as a function of C (NSE = 0) and an almost perfect

relationship when considering C as a function of

A (NSE = 0.002). There is a perfect nonlinear relationship

when considering that both C and A can be the dependent

or the independent variable (IR = 1).

This suggests the hypothesis that these variables are

both driven by a third causative factor such as, for instance,

economic growth. As urban area extent A of Modena was

measured independently from CO2 concentration

Table 4 Akaike Information Criterion (AIC) and Bayesian Informa-

tion Criterion (BIC) of Smoothing Splines (SS)

Fitting function Independent variable

A C P

AIC BIC AIC BIC AIC BIC

SS with S = 1.0 639 1027 639 1027 653 1061

SS with S = 0.8 426 501 486 694 582 884

SS with S = 0.6 416 475 466 598 561 841

SS with S = 0.4 409 458 451 561 548 802

SS with S = 0.2 402 441 435 523 528 751
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C observed in ice cores and in Mauna Loa, and no physical

reason is found for a cause-and-effect relationship between

A and C, it may be hypothesized that the relationship

between A and C is connected to a third causative factor

such as economic grow or demographic grow. The local

development that drove the increase of urban area extent of

Modena appears to have marched in step with the global

development that drove the rise in atmospheric CO2 con-

centration. Obtained values of the index of relationship are

compatible with this hypothesis. However, we outline that

it is not possible from this time series analysis to apportion

the observed temperature increase between the causal

pathways of global greenhouse forcing and local urban-

ization forcing on the surface energy balance.

The analysis confirms that P alone is not a good pre-

dictor of the other variables. However, considering that

P may affect T, and T may affect P, there is a quite strong

relationship between the two variables (IR = 0.761). The

same result holds considering P and C. When evaluating

P as dependent variable, we see that dependence on A and

C is weak: the NSE are 0.486 and 0.439, respectively. This

result seems interesting since it points out that, while

temperature is strongly linked to local and global effects of

urbanization, annual precipitation depth in Modena seems

to be unrelated to these effects.

4 Discussion and conclusions

The aim of this study was twofold. The first aim was to

investigate the relationships among observed increase in

mean annual urban air temperature in Modena, Italy,

increase in global CO2 concentration, local precipitation

depth and local urban area extent, over long time series.

The second aim was to find a new data-driven approach to

data modeling and a new index of relationship considering

that an environmental variable may be either dependent on

other variables or one of the independent variables, and the

direction of causation is often unknown. The analysis

presented in this study reveals that both local urbanization

and global CO2 concentration are important predictors

compared to precipitation, and that urbanization has played

a slightly less important role than CO2 concentration in the

last 50 years (Sect. 3.2). While there is no evident physical

connection between local urbanization and global CO2

concentration to explain similar temporal patterns, the

process of economic development had direct implications

on both urban area extent measured in Modena and CO2

concentration observed in global data sets (Sect. 3.1;

Figs. 4, 5, 6, and 7; Table 3, 4, and 5). It appears that the

local development driving urban area extent occurred along

the same temporal pattern as the global development

driving global CO2 concentration (Sect. 2; Figs. 3 and 7;

Table 1 and 2). This should not be seen as a total surprise,

as western economic development proceeded in parallel

across much of Europe and North America, and this overall

western development was the major contributor to global

anthropogenic greenhouse gas emissions of the twentieth

century. While local air temperature, global CO2 and local

urbanization are strictly interconnected, local precipitation
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depth seems to be unrelated to local urbanization and

global CO2 and it seems an important predictor of local air

temperature only when used together with the other con-

sidered variables (Figs. 3, 5, and 7; Table 4).

The analysis carried out reveals that linear relationships

between urban air temperature, urban area extent and

global CO2 concentration may be affected by spuriousness

since all series have a significant monotonic and positive

trend and relationships should be evaluated with nonlinear

models (Tables 1 and 2). Among nonlinear models,

analytic model like the 4-parameter logistic function has a

good fit but the parameters show that it is unsuitable for

future predictions, since the maximum temperature esti-

mated for an infinite value of local urbanization is

13,950 �C (the estimated curve is too steep out of the

domain of the observed values in Fig. 4) and, conversely,

the maximum temperature estimated for an infinite value of

C is 16.01 �C (the curve is almost constant out of the

domain of the observed values in Fig. 4). A possible

explanation of this different pattern of the two logistic

functions is that while air temperature T and global CO2

concentration C show consistent annual increases in the

last decade (from 2011 to 2019), local urban area extent

A shows a slight annual increase from 2001 to 2015 and

remains nearly constant from 2015 to 2019. As shown in

Fig. 4c, the logistic function captures the increase in T due

to quite constant values in A in the last decade by assuming

a very sharp shape, while it captures increases in T due to

relative higher increases in C, by assuming a smother shape

(Fig. 4d). The discrepancy between the estimated T-A and

T-C relationships may be due to the different pattern in the

last decade, showing high increases in T related to small
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Fig. 7 Scatter plot matrix of

observed and estimated values

of T (plots a, b, c, d), of P (plots

e, f, g, h), of A (plots I, j, k, l),

and of C (plots m, n, o, p) with

GAM with the single predictor

variable T (plots a, e, I, m), P

(plots b, f, j, n), A (plots c, g, k,

o) and C (plots d, h, l, p)

Table 5 IR values for GAM univariate relationships

Variable Y Variable X

T P A C

T 1.000 0.761 0.966 0.982

P 0.761 1.000 0.716 0.766

A 0.966 0.716 1.000 1.000

C 0.982 0.766 1.000 1.000
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increases or constant values in A and moderate increases in

T due to relatively higher increases in C. Smoothing splines

with a proper degree of smoothness (S = 0.2 or S = 0.4)

show a good fit. Information criteria indexes indicate that

more flexible smoothing splines (S[ 0.4) do not distin-

guish signal and noise in the estimated relationship and

overfit the observed data (Table 4). Even with a proper

degree of smoothness, however, smoothing splines do not

give insights into the relationships between environmental

variables since they are nonparametric models. Unlike

other nonlinear models, GAM seems to be flexible enough

to capture the relationships among variables and can be

considered as parametric models. Indeed, the contribution

of each explicative variable can be evaluated and compared

by analyzing the coefficient of each additive function

(Fig. 6). Results show that global CO2 and precipitation

depth, and the couple of predictor local urbanization and

precipitation depth, have the same accuracy in predicting

local temperature. Therefore, local urbanization and global

CO2 seem to convey essentially the same information

content in predicting local temperature. The most accurate

prediction of temperature is obtained when all the three

considered predictors are used. This indicates that although

local precipitation is poorly related to other variables when

considered singly, it contributes to improve predictions

when considered in combination with other predictors

(Figs. 5 and 6). The analysis of single contributions f0,

f1(P), f2(A), and f3(C) to local temperature T = f0 ? f1(-

P) ? f2(A) ? f3(C) reported in Fig. 6 reveals an increase

of ? 0.029 �C in the MV of f1(P), an increase of ?

0.544 �C in the MV of f2(A), and an increase of ?

0.751 �C in the MV of f3(C) when the 50-year periods of

time 1881–1930 and 1970–2019 are compared, indicating

that the role of CO2 concentration C has been increasingly

important.

To analyze the causal effect of a variable on another it is

considered that in climate modeling the direction of

causality is often reciprocal when not considering lagged

variables. For instance, air temperature causes changes in

precipitation depth and precipitation depth causes changes

in air temperature. We have therefore introduced a new

interrelationship index considering the fit of the model in

which the first variable is the dependent one (and the

second variable is the independent one) and the fit of the

model in which the first variable is the independent one

(and the second variable is the dependent one). The index

is normalized and does not depend on the scale of mea-

surement of the variables (Eq. 7). The index shows, for

instance, that even though precipitation depth alone is not a

good predictor for the temperature, considering that the

temperature may be a predictor for the precipitation depth,

there is a quite strong relationship between the two vari-

ables (Table 5). Regarding the methodology, future work is

needed to analyze the behavior of the index of relationship

in simulated data sets, and to apply this index to other

environmental data. Future work is needed to examine how

extensive this tight coupling between time series of local

urban area extent and global CO2 concentration is across

other western cities. A special effort is also needed to

further investigate the relative influence of urbanization

and CO2 concentration along mechanistic lines of inquiry.

Appendix 1

Considering annual values of the NAO teleconnection

index, from 1950 to 2019, the statistical assessment of the

presence or absence of a monotonic trend, inhomogeneity

and change points, has been made by performing several

nonparametric and parametric tests, using XLSTAT

(Addinsoft 2023). P values of the different tests are

reported in Table 6.

At the 1% level, all tests agree in accepting the null

hypothesis that the annual values are independent, and the

series is homogeneous. Correlations with the other climatic

series of P and T are then likely to be nonspurious. Cor-

relation coefficients and p values are reported in Table 7.

The correlation between the NAO index and precipita-

tion P, and the correlation between the NAO index and

temperature T are clearly not significant. To further

investigate the influence of the NAO index on the local

temperature T and compare the nonlinear relationship

between T and NAO with the nonlinear relationship

between T and C and T and A, different smoothing splines

and the 4-parameter logistic function are estimated. In

Fig. 8, cubic smoothing splines with S = 1.0 and S = 0.2

and the 4-parameter logistic function LF are reported.

Table 6 P values of different

homogeneity tests
Test Mann–Kendall Von Neuman KPSS Pettitt Buishand SNHT

p value 0.098 0.514 0.027 0.112 0.065 0.153

Table 7 Correlation coefficients and related p values (in brackets)

Variable T (�C) P (mm) NAO

T (�C) 1 (0) 0.039 (0.751) 0.139 (0.250)

P (mm) 0.039 (0.751) 1 (0) - 0.012 (0.922)

NAO 0.139 (0.250) - 0.012 (0.922) 1 (0)
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Table 8 reports the NSE error (2) for smoothing splines.

Clearly, smoothing splines with S = 1.0 overfit the data,

while all the other estimated smoothing splines have sim-

ilar AIC and BIC values (not reported) and can be selected

as models with a proper degree of smoothness.

Both the graphical representation of the estimated

functions and the values of the NSE indicate that local

urbanization A and the global CO2 concentration C are

more related to local temperature T than the NAO index

and are better predictors of temperature changes in the last

70 years. In conclusion, results suggest that neither local

precipitation P nor the NAO index seem to be related to the

local temperature T. This may be because local geo-

graphical features may modify the impact of the NAO

index on precipitation and temperature in specific areas.
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