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Abstract
In the context of the ongoing United Nations Framework Convention on Climate 
Change (UNFCCC) process, it seems important to focus attention not only on global 
mean surface air temperature (GSMT) but also on the climate of specific regions in 
order to gain insights into the dynamics of the changes, the timescales of the peri-
odic components, the local trends and the relationships between climatic variables 
in the region of interest. This is important for scientists as well as for policymakers. 
This paper provides an analysis of the changes in local air temperature and precipi-
tation depth in exceptionally long observational records and examines the relation-
ships between these two variables. The focus is on monthly values. Temperature 
maximum, minimum, range, and cumulative precipitation depth are considered. The 
wavelet analysis shows that the scale of variation is different for temperature and 
precipitation and that the behavior of the temperature range values diverges from the 
behavior of the minimum and maximum values. The timescale of important changes 
in the long-term trend is, however, similar. Results also suggest that the main mode 
of variability is persistent through time in the series of temperature maximum, 
minimum, and range but not in precipitation depth. This is a clear evidence of cli-
mate change. All series show variances that change over time and are, as expected, 
nonstationary. The analysis of the wavelet coherence shows that the relationship 
between precipitation and temperature evolves through time, and its intensity var-
ies considering different time scales. The association between these climatic vari-
ables is particularly strong in the last decade. Is it noteworthy that the analysis of the 
coherence suggests that temperature is leading to rain and not the other way around. 
This highlights the impact of global warming on the hydrologic cycle and on related 
human activities.
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1 Introduction

The subject of climate change usually focuses attention on global mean surface air 
temperature both for analyzing temperature change (Easterling et al. 1996; Hansen 
and Lebedeff 1987; Hansen et  al. 2010; Thompson et  al. 2009; Ozbay and Toker 
2021) and for estimating relationships between temperature and climate forcing 
mechanisms like carbon dioxide and solar irradiance (Hansen et al. 1981; Simmons 
et al. 2010; De Laat and Maurellis 2004; Broecker 2012; Boucher and Reddy 2008). 
However, it is the change on regional and local scales that affects people directly, 
and the knowledge of this change is essential for the development of adaptation 
strategies and policy makers intervention (Sutton et  al. 2015). Geophysical local 
time series are often generated by complex systems of which we know little about, 
and predictable behavior in such systems, like trends and periodicities are therefore 
of great interest [see, among others, Woody et al. (2020)]. In this paper, we examine 
historical variations in local surface air temperature and precipitation depth using 
data from the Geophysical Observatory of the University of Modena and Reggio 
Emilia (Italy). These data can provide uncommon evidence of the long-term trend 
and of the relationships between temperature and precipitation, which are hard to 
find in any global investigation due to the scarcity of long observed (and not simu-
lated) time series. Discrete and continuous wavelets are used to characterize the time 
series and to study the association between temperature and precipitation, to com-
pare the features of these climatic variables and to detect the abrupt shifts in both 
cyclic and trend dynamics. The tools of the discrete and continuous wavelet trans-
forms (Torrence and Compo 1998; Percival and Walden 2000; Ruskal et al. 1992; 
Chui 1992), the wavelet spectra, coherence, and phase offer a comprehensive assess-
ment of the characteristic modes of variability of climate system forcing and of the 
scale-based relationships between natural climate variables (Kumar and Foufoula-
Georgiou 1993; Gambis 1992; Gao and Li 1992). In addition, short-term variations 
in local surface temperature and rain can be associated with internally generated 
natural climate variability and external climate forcing, while long-term variations 
are strongly related to human-induced changes only (Gallegati 2018). In particular, 
the research questions addressed in this work, are: 

1. Which frequencies contribute the most to the variability of the series? Do the 
periodicities remain constant or evolve over time? Are these periodicities the 
same in temperature and precipitation?

2. How does the long-term trend evolve over time? Is there a point of an important 
significant discontinuity?

3. At which timescales, if any, do temperature and precipitation have a common 
behavior? Has the association between these two variables changed in the last 
decade? Which variable influences the other one?
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Giving an answer to these questions means  systematically weather changes and the 
relationships between variations in temperature and precipitation. Even though the 
annual cumulative precipitation depth and the annual maximum and minimum tem-
perature do not show evident dynamics in time, the study of climate change requires 
consideration and comparison of both the internal variability in the local system and 
the behavior due to global development. Wavelet analysis is used here to separate 
the contribution of these two factors by reconstructing the original time series as a 
sum of detailed components, each of which corresponds to an oscillating component 
with a different period that can be associated with local variations, and a smooth 
component showing the long-term trend, that can be associated to a global dynamic.

The rest of the paper is organized as follows. Section 2 illustrates the data and 
methods. Section 3 reports and discusses the results of the statistical analyses. Con-
clusions and directions for future research are reported in Sect. 4.

2  Data and methods

2.1  Data

The monthly time series of maximum and minimum air temperature Tmax and Tmin 
and temperature range Trange ( ◦ C) and cumulative precipitation depth PMM (mm), 
displayed in Fig.  1, are obtained from uninterrupted daily observations collected 
from 01/01/1861 to 12/31/2020 at the Geophysical Observatory of the University 
of Modena and Reggio Emilia (latitude 44.6474◦ N, longitude 10.9293◦ E, elevation 
76.50 m asl), Modena, Italy. These long term in situ observations (160 years, 1920 
monthly observations per series) are not affected by in-homogeneities caused by 
changes in instrumentations, station moves, different observing practices (for exam-
ple, different formulas for calculating the minimum and the maximum) or different 
observations time. Therefore, observed variability is due to changes in the local and 
global environment and can be related to global  CO2 as well as to variations in the 
local development. Tmax and Tmin are defined as the maximum and minimum daily 
values in the month, respectively, while Trange is the monthly average of the daily 
temperature range values. While changes in the maximum and minimum tempera-
tures are strongly associated with changes in the average temperature, temperature 
range provides additional information for observing climate variability and change 
(Braganza et  al. 2003, 2004). For this reason, in this study we also consider the 
monthly average of the difference between daily maximum temperature and mini-
mum temperature, as it has been shown to be an important meteorological indicator 
associated with global climate change (Qu et al. 2014; Easterling et al. 1997; Leath-
ers et al. 1998; Karl et al. 2004; Sun et al. 2006). PMM is defined as the cumulative 
precipitation depth in the month. There are 9 missing values in precipitation in 1943 
that are inputed using cubic spline interpolation.
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2.2  Methods

To extract information and to identify scales of variation in the series we perform 
a wavelet analysis. In order to uncover the different characteristics of the series, we 
apply both discrete and continuous wavelets. We use a modified version of the clas-
sic Daubechies wavelet for the discrete analysis (Daubechies 1988; Akansu et  al. 
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Fig. 1  Time series plot of monthly cumulated PMM, minimum (Tmin), maximum (Tmax) and range 
(Trange) temperature values. The red line on each plot displays the long-term trend ( S

4
 ) obtained from 

the wavelet anlaysis



1 3

Environmental and Ecological Statistics 

1992; Akansu and Smith 1995; Mallat 1999) called “least asymmetric” (LA), and 
the Morlet wavelet for the continuous analysis. The LA filter is a common choice 
in practical applications (see, for example, Elayouty et  al. 2016). The Daubechies 
orthogonal wavelets with different orders are the most widely used discrete wave-
lets in geophysics since they are compactly supported (Daubechies 1992; Lau and 
Weng 1995) and the behavior of the signal at infinity does not play any role. While 
Daubechies wavelets may be preferred for synthesis and data compression, continu-
ous Morlet wavelets may be preferred for scale analysis. The advantage of using the 
Morlet wavelet over the other continuous wavelets is due to its complex nature that 
is able to detect both time dependent amplitude and phase for different frequencies 
exhibited in the time series (Lau and Weng 1995). For a comparison of different 
continuous wavelets in an ecological context we refer to Mi et  al. (2005). All the 
analyses are carried out with R (R Core Team 2021), using the R packages wave-
lets (Aldrich 2020), biwavelet (Gouhier et al. 2021) and an advanced version 
of the latter (Schulte 2019), available at the website of the author.

We first use the discrete wavelet transform (DWT) to perform a spectral analysis 
assuming stationarity, in order to partition the variance of the series into its different 
oscillating components with different frequencies (periods) and to detect which fre-
quencies contribute the most to the variance of the series. We then use the discrete 
wavelet for a non-stationary analysis by performing a local time-scale decomposi-
tion of the series and estimating the spectral characteristics as a function of time 
(Lau and Weng 1995; Torrence and Compo 1998). Directly related to these methods 
is the approach proposed by Nason et  al. (2000), where time-varying variance is 
accounted for, and a time-varying spectrum is computed, assuming first-order sta-
tionarity. An example where this method is used in a climatology context is Beaul-
ieu et al. (2020). Rather than overthrowing existing methodology, the work provides 
an additional complementary tool for time series without trends. Recent work by 
McGonigle et al. (2022), who also analyzes a temperature data set, shows that the 
approach of Nason et al. (2000) can be extended to smooth trends and proposes a 
wavelet-based framework to model time series exhibiting time-varying first and sec-
ond-order structure. The trend is considered to be a deterministic smooth function 
representing long-term (low frequency) patterns or systematic variations in the time 
series. Further, we use the continuous wavelet transform (CWT) approach that is 
more suited for the extraction of local time-scale or time-frequency information and 
is characterized by a well-defined relationship between frequency and scale (Daube-
chies 1992). As shown in Cazelles et al. (2008), while discrete wavelets are more 
appropriate for the representation of the process on appropriate bases and the rela-
tionship between scale and frequency in this approach has less meaning, the main 
feature of continuous wavelets is the time-frequency decomposition with the optimal 
trade-off between time and frequency resolution, which permits investigation of the 
temporal evolution of aperiodic and transient processes. Last, we use the continuous 
wavelet coherence for a bi-variate analysis of the time series, in order to detect and 
quantify the non stationary association between precipitation and temperature.
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2.2.1  Wavelet transform

The wavelet transform decomposes a signal over dilated and translated functions of 
the so called “mother wavelet” �(t)  (Percival and Walden 2000) that can be 
expressed as a function of two parameters, one for the time position, � , and one for 
the scale of the wavelet, a. More formally, wavelets are defined as 
�a,�(t) = a−1∕2�

(
t−�

a

)
 . The wavelet transform of a time series x(t) of length T 

(t = 1,… , T) , with respect to a chosen mother wavelet is performed as follows:

where ∗ denotes the complex conjugate form. The wavelet coefficients Wx(a, �) rep-
resent the contribution of the scales (the a values) to the signal at different time 
positions � . The wavelet transform can be though of as a cross-correlation of a sig-
nal x(t) with a set of wavelets of various widths or scales a at different time positions 
� . The wavelet function is not arbitrary. It is rather normalized to have unitary vari-
ance so that ∫ |�(t)|2dt = 1 and it verifies ∫ �(t)dt = 0 . The wavelet decomposition 
is therefore a linear representation of the series where the variance is preserved. The 
original series can be recovered by using the following inverse transform:

where Φ(f ) denotes the Fourier transform of �(t) . Therefore, the wavelet transform 
is just a linear filter whose response function is given by the wavelet function. By 
means of (2), the original series can be reconstructed by integrating over all scales 
and locations. However, the integration can be limited over a chosen range of scales 
a1 − a2 , to perform a band-pass filtering of the original time series in this cho-
sen range. This analysis is called multiresolution analysis (MRA). In the discrete 
domain, the scale and shift parameters are discretized as a = am

0
 and � = n�0 , with 

a0 > 1 and �0 ≠ 0 to restrict the values of the parameters to a discrete sublattice [see 
Daubechies (1988)]. The wavelets are also discretized, as follows:

where n and m are integer values. The discrete wavelet transform and its inverse 
transform are defined as follows:

(1)Wx(a, �) =
1√
a ∫

∞

−∞

x(t)�∗
�
t − �

a

�
dt = ∫

∞

−∞

x(t)�∗
a,�
(t)dt

(2)x(t) = ∫
∞

−∞ ∫
∞

0

1

a2
Wx(a, �)�a,�(t) dt da

�

∫
∞

0

‖Φ(f )‖2∕f df

(3)�m,n(t) = a
−m∕2

0
�

(
t − n�0

am
o

)

(4)Wm,n = ∫
∞

−∞

�∗
m,n

(t)x(t)dt,

(5)x(t) = k�

∑

m

∑

n

Wm,n�m,n(t)
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where k� is a constant value for normalization. The function �m,n(t) provides sam-
pling points on the scale-time plane that are linear sampling in the time direction but 
logarithmic in the scale (a-axis) direction. The scales are on a dyadic base since a0 is 
chosen as a0 = 2j where j is an integer value. This is analogous to the use of a set of 
narrowband filters in conventional Fourier analysis.

2.2.2  Mother wavelet

In our application, for the discrete analysis we use a modified version of the Daube-
chies wavelet, called least asymmetric (LA). This wavelet is the orthogonal wavelet 
with a phase response that most closely resembles a linear phase filter; this allows to 
align the filtered series in time with the original series. The wavelets in the least asym-
metric family have compact support and are indexed by a parameter N proportional to 
the regularity since, as N increases, the wavelet becomes smoother. In our application, 
N = 8 . The wavelet is defined as follows:

where �(t) is a compactly supported scaling function, �(t) =
∑∞

k=−∞
�k

√
2�(2t − k) 

for the progression {�k} , k real integer, satisfying the following conditions for all 
integers N ≥ 2:

where �0m is the Kronecker delta,

where �k = (−1)k�−k+1 . The function (6) satisfies the N vanishing moments condi-
tion ∫ �(t)tmdt = 0 , for all integers 0 ≤ m ≤ N − 1 . This last property has impor-
tant implications for applications since it ensures that fine-scale wavelet coefficients 
will only be large where a function or its derivatives have singularities (Daube-
chies 1992). Another important feature is that the wavelet compact bases are capa-
ble of representing various classes of functions more efficiently than Fourier bases 
(Donoho et al. 1994). If we consider, as an example, a piecewise continuous func-
tion, many Fourier basis functions are needed to represent the discontinuities accu-
rately and the effects of these basis functions will be global. On the other hand, 

(6)�(t) =

∞�

k=−∞

�k

√
2�(2t − k)

(7)𝛼k = 0 if k < 0 or k > 2N

(8)
∞∑

k=−∞

�k �k+2m = �0m, for all integers m

(9)
∞�

k=−∞

�k =
√
2

(10)
∞∑

k=−∞

�kk
m = 0, 0 ≤ m ≤ N − 1
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wavelets will be able to represent the discontinuities more efficiently and at the 
same time they will be local and will not affect the global representation. The DWT 
has some limitations in terms of sample size (it has to be a power of two), and the 
starting point and filter choice can have an impact on the wavelet transform of the 
series. Instead, we use the maximum overlap DWT (MODWT); this is no longer an 
orthogonal transformation which means a higher computational cost ( O(T log T) as 
opposed to O(T) for the DWT), but without the issues that the DWT has (Percival 
and Walden 2000). In either case, for a given level of decomposition J, the original 
series can be re-expressed as the sum of a number of wavelet details components 
Dj , j = 1,… , J and a smooth component SJ . The wavelet detail Dj can be seen as a 
time series related to variations in the original time series at a scale of 2j−1 months, 
j = 1,… , J , while the smooth component SJ can be interpreted as a time series 
related to variations in X at scale of 2J and higher, so one could think about SJ as the 
long-term trend. The filtering performed assumes the time series to be a portion of a 
larger periodic sequence with period T, so we might expect boundary effects at the 
beginning and end of the series.

For the continuous analysis we utilize the mostly used Morlet mother function, 
defined as follows:

where �0 is the non dimensional frequency taken to be 6 to satisfy the admissibility 
conditions. For �0 = 6 , the second term in the Fourier transform of (11):

is so small that it can be neglected in practice and the Morlet wavelet can be conse-
quently considered as a modulated Gaussian waveform. Another characteristic of the 
Morlet wavelet is that the relation between the frequency f and the scale parameter a 
can be derived analytically and 1

f
=

4�a

�0+
√

2+�2
0

 with �0 the central angular frequency 

of the wavelet ( �0 = 2�f0 ). With �0 around 2� the scale a is inversely proportional 
to the frequency f. This greatly simplifies the interpretation of the wavelet analysis 
and one can replace, in all results, the scale a by the frequency f or the period 1/f. 
With �0 = 6 the Fourier period pF is almost equal to the scale, since pF = 1.03a 
(Torrence and Compo 1998).

2.2.3  Wavelet power spectra and cone of influence

Following the previous paragraph, the scale a is replaced by the frequency f in the 
notation that follows. Considering the wavelet transform of a time series x(t) defined 
in (1), we can obtain the local wavelet power spectrum, which gives the indication 
of how volatile a time series is across different time scales, as follows:

Since we are dealing with finite-length time series, errors will occur at the beginning 
and end of the wavelet power spectrum as the transform assumes the data is cyclic. 

(11)�(t) = �−1∕4ei�0te−t
2∕2

(12)Φ(�) = e(−�−�0)
2∕2 − e−�

2∕2e−�
2
0
∕2

(13)Sx(f , �) = ‖Wx(f , �)‖2.
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As the wavelet gets closer to the edge of the time series, parts of it exceed the edge 
and thus the values of the wavelet transform are affected creating boundary effects. 
The affected region increases in extent as the scale a (or the frequency f) increases. 
This zone where edge effects are present is called “cone of influence” and the spec-
tral information in the cone lacks in accuracy and should be interpreted with cau-
tion. The Fourier spectrum of a series, assuming stationarity, can be related to the 
global wavelet power spectrum which is defined as the averaged variance contained 
in all wavelet coefficients of the same frequency f or scale a:

with �2
x
 the variance of the time series x(t) and T the length of the series. Another 

interesting computation is the mean variance at each time location, obtained by 
averaging the frequency components:

where Φ(f ) is the Fourier transform of �(t) . This quantity can also be filtered in a 
chosen frequency band (or range of scales) to perform a multiresolution analysis.

2.2.4  Wavelet coherence and phase difference

For the bi-variate analysis, we use the wavelet coherence. In Fourier analysis, the 
coherence is used to determine the association between two time series. The coher-
ence function is a direct measure of the correlation between the spectra of two time 
series. To quantify the relationship between two non stationary series, one can com-
pute the wavelet coherence. Following Torrence and Webster (1999), we define 
the wavelet coherence between two time series x(t) and y(t) as the cross spectrum 
Wx,y(f , �) = Wx(f , �)W

∗
y
(f , �) with * denoting the complex conjugate, normalized by 

the spectrum of each series:

where the symbol ⟨⟩ denotes a smoothing operator in both time and scale. Rx,y(f , �) 
is bounded in [0, 1]. The smoothing is performed by a convolution with a constant 
length window function both in the time and frequency direction (Chatfield 1989). 
For the Morlet wavelet, the most suited smoothing operator having similar footprint 
as the wavelet, is given in Torrence and Webster (1999). It is

for the frequency and

(14)S̄x(f ) =
𝜎2
x

T ∫
T

0

‖Wx(f , 𝜏)‖2dt

(15)s̄x(𝜏) =
𝜎2
x
𝜋1∕4𝜏1∕2

∫ ∞

0
‖Φ(f )‖2∕fdf �

∞

0

�
1

f

�1∕2

‖Wx(f , 𝜏)‖2dt

(16)Rx,y(f , �) =
‖⟨Wx,y(f , �)⟩‖

‖⟨Wx,x(f , �)⟩‖1∕2‖⟨Wy,y(f , �)⟩‖1∕2

(
Wx,y(f , �) ∗ c

−t2

2f2

1

)||||||f
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for time, where c1 and c2 are normalization constants and Π is the rectangle function. 
The factor 0.6 is an empirically determined scale decorrelation length. In practice 
both convolutions are done directly and the normalization coefficients are deter-
mined numerically. The advantage of these quantities based on wavelets is that they 
vary in time and can also detect transient correlations between two series. The wave-
let coherence provides information about at which temporal location and frequency 
two non stationary time series are linearly correlated. The quantity Rx,y(f , �) can be 
interpreted as the proportion of power of x(t) explained by the linear relation with 
the power of y(t) at a particular time and frequency band. It has the same meaning 
of a square correlation coefficient between two time series. Since the Morlet wavelet 
is complex, we may also obtain information about the possible delay in the relation-
ship, that is information about which variable is leading the other one, by computing 
the phase difference. The analysis of the phase or out of phase relationship allows us 
to get insights into the asymmetric association between the two series, which could 
be useful for making hypotheses about possible causal relationships. The phase dif-
ference is defined as follows:

where ℑ indicates the imaginary part and ℜ the real part. The phase difference var-
ies cyclically between −� and � over the duration of the component waveforms. Pos-
itive values suggest that is x(t) leading y(t) while negative values suggest the oppo-
site situation. Values close to zero indicate that the relationship between the two 
series, if present, is symmetric.

2.2.5  Significance level

One can test whether the wavelet-based quantities, that is the spectra or coherence, 
observed at a particular time for a particular scale, are real features and not due to 
a random process with the same Markov transitions as the original time series. In 
our application, we perform hypothesis testing using the existing R functions writ-
ten by Schulte (2019) and available at the author’s website. The functions are an 
advanced version of the biwavelet R package. Regarding the wavelet spectrum, 
one can compare the estimated sample spectrum with a background noise spectrum. 
To make such comparisons, statistical tests such as the point-wise (Torrence and 
Webster 1999), area-wise (Maraun and Kurths 2004; Maraun et al. 2007), geomet-
ric (Schulte et  al. 2015), and cumulative area-wise (Schulte 2016a) can be imple-
mented. The point-wise significant test proposed by Torrence and Webster (1999) 
is the first and still mostly used method that allows placing wavelet analysis in a 
statistical hypothesis testing framework. In the point-wise approach, the statistical 
significance of wavelet quantities associated with points in a wavelet spectrum is 
assessed individually, without considering the correlation structure among wavelet 

(Wx,y(f , �) ∗ c2Π(0.6a))
|||�

(17)�x,y(f , �) = tan−1
ℑ
�
⟨Wx,y(f , �)⟩

�

ℜ
�
⟨Wx,y(f , �)⟩

� ,
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coefficients. For wavelet power spectra of climate time series, theoretical red-noise 
spectra are the preferred noise background spectra against which sample wavelet 
power spectra are tested. Regarding coherence, more recent Monte Carlo methods 
are used to estimate the background noise spectra (Schulte 2016b; Grinsted et  al. 
2004). We apply both the point-wise approach and the cumulative area-wise test 
developed by Schulte (2019). The second approach overcomes some drawbacks 
of the first one addressed in literature, like the frequent generation of many false 
positive results because of the simultaneous testing of multiple hypotheses (Maraun 
et al. 2007; Schulte et al. 2015) and the occurrence of spurious results in clusters 
because of the correlations of the wavelet coefficients.

3  Analysis

3.1  Discrete wavelet and multiresolution analysis

Multiresolution analysis (MRA) permits a very detailed analysis by separating the 
signal into components at different scales. We apply the MODWT with dyadic scale, 
allowing us to decompose variations in the monthly series at scales of 1, 2, 4 months 
and so on. As introduced in Sect.  2.2.2, for a fixed level of decomposition J, the 
original time series X can be reconstructed based on the wavelet coefficients as 
X =

∑J

j=1
Dj + SJ , where X is the time series vector of length T. The analysis of 

monthly data with J = 4 gives a sequence of results which relate to variations at 
scales of 1, 2, 4, and 8 months. The value J = 4 was chosen to explore changes in 
the data within the year (seasonality in particular), which we expect to be more rele-
vant than variations on a multiannual scale (that could be investigated using a 
greater J) for this kind of data. We considered greater values of J (not shown here) 
to ensure that the dominant modes of variability had been identified with J = 4 . 
Extracting signal components at different resolutions amounts to decomposing vari-
ations in the data on different time scales, or equivalently in different frequency 
bands (different rates of oscillation). Accordingly, one can visualize signal variabil-
ity at different scales, or frequency bands simultaneously. Detail components Dj 
become progressively smoother since, in terms of frequency, the frequencies con-
tained in the components become progressively lower. Figure  2 reports, for each 
time series, the distribution of the estimated wavelet variances v̂2

X
(aj), j = 1,… , 4 , 

calculated as the variance of the wavelet coefficients {Waj,t
} at that scale. The esti-

mated wavelet variance at scale aj can be calculated as:

where Mj is the number of coefficients not affected by boundary conditions at scale 
j. It is interesting because it provides a decomposition of the time series variance �2

X
 

on a scale by scale basis.

v̂2
X
(aj) =

1

Mj

Mj∑

t=1

W2
aj,t
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The analysis reveals that temperature and precipitation have a different perio-
dicity. While for the minimum, the maximum and the temperature range the main 
periodic component (that is, the scale contributing the most to the variance of the 
series) is clearly 4 months and the periodicity is thus close to the seasonality, for 
rain intensity the main periodic component is one month. Figures 3, 4, 5, and 6 
show the wavelet detail series D3 for PMM, Tmin, Tmax and Trange, correspond-
ing to the scale of 4 months previously detected as the main periodic component 
for temperature. As outlined before, we can think of D3 as the seasonal compo-
nent in the data. We also report the wavelet detail series D1 (Fig. 7) for PMM, as 
it is the main responsible for the variability in the PMM time series.

The analysis reveals that the main oscillating component is nearly constant 
through time, both in amplitude and time location, for Tmin, Tmax and Trange. 
On the contrary, the seasonal behavior of the rain intensity is quite irregular, 
with more frequent peaks in the last four decades. It is hard to identify changing 
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behavior or any specific time evolution in the considered period (Fig. 3). How-
ever, if we analyze the monthly pattern D1 (Fig. 7) we note that extreme peaks are 
present in some years all over the observed period but the last two decades are 
characterized by the absence of nearly-zero amplitudes, quite frequent in the past 
years, and relative higher amplitudes of the oscillating component. We may con-
clude that, even though the seasonal behavior of the rain intensity doesn’t show 
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an evident change in the last decades, the monthly behavior has indeed changed 
in the mode of variability. The long term trend, that is the S4 wavelet smooth for 
all series, is shown in Fig. 8.

We note an evident change in the trend component in all temperature series from 
around 1960 and a decrease in Trange over time. While both the minimum and the 
maximum temperature start increasing as ever before, the range temperature starts 
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decreasing. Recent changes in the dynamics of the range temperature can be related 
to climate changes due to anthropogenic forcing (Stone and Weaver 2002, 2003; Dai 
et al. 1999). The reduction of the range is associated to larger increases in minimum 
temperature than maximum temperatures over the same period and this difference 
has been attributed in literature to a number of factors such as urban heat, land use 
change, aerosols and greenhouse gases changes in solar irradiance (Braganza et al. 
2004; Makowski et al. 2008). Different regions may be affected by different factors. 
In this study, we do not consider the possible anthropogenic causes but we find that, 
for the region of interest, temperature changes are indeed present in the last 50 years, 
as supported by other local and global studies (Makowski et  al. 2008). The large 
negative trend of the range temperature is an important meteorological indicator that 
reflects the instability of the weather, very unlikely to have occurred due to inter-
nal variability or external climate forcing but rather associated to global dynamics 
related to human-induced changes.

3.2  Time‑dependent wavelet variance

The wavelet analysis reported in the previous section assumes variability to be con-
stant over time. While the wavelet variance can be useful as a first estimate to iden-
tify the main scale of variation, a better understanding of the process can be gained 
by means of the time-dependent wavelet variance when nonstationarity is suspected. 
As an alternative, some works based on the wavelet periodogram have been pro-
posed to perform formal testing on stationarity  (Nason 2013) and detect multiple 
change points (Korkas and Fryzlewicz 2017). We can explore the time-dependent 
wavelet variance at scale aj by choosing a smoothing window Ns and by estimating 
the wavelet variance as a moving average of squared wavelet coefficients (note that 
the mean for the coefficients is zero) as follows:

 We chose a window of Ns = 12 months since the year is the natural period of geo-
physical processes occurring across seasons, like temperature and rain. We also con-
sidered using smoothing windows of greater width but the overall pattern remained 
the same. The resulting time-dependent wavelet variances are reported in Figs.  9, 
10, 11, 12, and 13. While Figs. 3, 4, 5, and 6 allow us to investigate the changes in 
the mode of variability, from Figs. 9, 10, 11, 12, and 13 we may get insights into the 
changes of the magnitude of the variability across the last 160 years. We see that for 
rain intensity the variability has increased in the last 30 years, both considering the 
one month scale (responsible of the highest variability, Fig. 9) and the seasonal scale 
(Fig. 10). On the contrary, the temperature series show a decrease in variability in 
the last 30 years. For temperature, the highest variability is found during the period 
1930-1960. This confirms that the minimum, the maximum and the temperature 
range in the last 50 years fluctuate less across seasons while the monthly and the 
seasonal cumulative precipitation depth is much more variable than before.

v̂2
X,t
(aj) =

1
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Ns+t−1∑

i=t

W2
aj,i
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3.3  Continuous wavelet transform

Figures 14, 15, 16, and 17 show the wavelet power spectra obtained with con-
tinuous wavelet analysis (Eq. 13). The vertical axis reports the wavelet scale (in 
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years) while the horizontal axis is time (in years). The colour code for power 
ranges from dark blue (low values) to dark red (high values). The superimposed 
white area indicates the cone of influence that delimits the region influenced 
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by edge effects. The thick black contours indicate areas (i.e. patches) signifi-
cant at the � = 5% level (following the cumulative area-wise testing by Schulte 
(2019)). P-values associated with values within the contours are less than 5% . 
The analysis reveals a single persistent mode of variability of one year within 
the whole considered period, for temperature. It seems that temperature is not 
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affected by transient features in annual or multi-annual scales. On the contrary, 
for the rain there clearly exists a 32-year mode of variability that ends around 
1980 (without considering the cone of influence), suggesting a potential change 
in the process of generating rain at that time. Significant patches at scales of 2 
and 4 years before 1900 and after 1950, respectively, seem to be associated with 
singularity-like time domain features rather than periodicities, since they are 
intermittent.
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3.4  Wavelet coherence

The analysis of the coherence (Eq. 16) for two time series reveals areas with high 
common power. The value of the wavelet coherence can be thought of as a local-
ized correlation coefficient in a time-frequency domain: its value in the [0, 1] range 
provides information about how strong the association between the two series is, at 
each time point and time scale. The phase difference provides a measure of the lag 
difference between the two series at each time and scale. We can think about it as a 
suggestion of causality: if the phase difference is positive, it is the first series lead-
ing the second, and the other way around if the phase difference is negative. In the 
outcome, as for the power spectrum, the superimposed white area indicates the cone 
of influence, while thick black contours enclose areas (i.e. patches) significant at the 
� = 5% level following the cumulative area-wise test.

The top panels in Figs. 18, 19, and 20 show that an intermittent strong (signifi-
cant) annual association between temperature and rain is present from 1861 until the 
year 2020. A significant inter-annual association is also found at higher scales but 
again, it is not constant over time. For Tmax, it is particularly strong in the last 20 
years on a scale of 28 years, and on a scale of 16 years over the period 1930–2000. 
The latter relationship is also found for Tmin. On the other hand, Trange shows a 
stronger (yet intermittent) relationship with rain that Tmin or Tmax on scales of 0.5 
years and 2-6 years.

The bottom panels in Figs. 18, 19, and 20 show the phase difference. For ease of 
interpretation, we have added arrows wherever the coherence is above 0.8. It can be 
seen that the prevalent type of relationship, regardless of the scale, time period and 
couple of variables, is asymmetric, with temperature leading precipitation and not 
the other way around. This result can be generalized to a global scale, suggesting 
that global warming influences the other climatic variables.
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4  Discussion and Conclusions

Although it is commonly recognized that the mean air temperature is related to the 
increase in global carbon dioxide concentration, the dynamics of local trends due 
to local weather variables such as precipitation depth or due to local development 
remain unclear. Explaining the characteristic of local climate variables and the rela-
tionships among them is an important challenge emphasized by the increasing evi-
dence that several ecological processes are affected by local climatic fluctuations. 
In this study, monthly series of air temperature and precipitation depth are exam-
ined over the period of time from 1861 to 2020, and a systematic analysis taking 
into account the essential features of non stationarity and time scale dependence is 
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presented. Data are particularly relevant since long time series of observed and not 
reconstructed climatic variables are scarce in literature. Advanced statistical tools 
combining time and frequency domain, such as wavelet analysis are used to deter-
mine and compare the internal variability of the series for different scales of time 
and to study the long-term patterns and the relationships between temperature and 
precipitation. Analysis of results suggests that the main periodic component leading 
the variability is one month for precipitation and 4 months for temperature, with a 
different cycling dynamic over the period 1861–2020 in rain and temperature range, 
and similar cycling dynamic in minimum and maximum temperature. There appears 
to be a marked change in the behavior of the long-term trend around 1981 for both 
rain and temperature. This marked change in the dynamic of the evolution of both 
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climatic variables can be associated with endogenous or exhogenous mechanisms 
such as local or global development (global  CO2, anthropogenic heating of urban 
areas). While rain shows the highest variability in the last two decades, temperature 
exhibits peaks of variability within the time interval 1930-1960. Within the same 
period, the relationship between temperature and precipitation is statistically signifi-
cant considering multi-annual periods of about 16 years. From 2000, the association 
is highly significant considering multi-annual periods of 2–4 years. There is a strong 
significant relationship between temperature and precipitation on a yearly cycle but 
it is not constant over the time period under study. An important finding of this study 
is the different pattern of the minimum and maximum temperatures and the monthly 
average of daily range temperature in the last 50 years, consistent with recent works 
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showing how climate change mostly influences temperature range (Kalnay and Cai 
2003; Hua et al. 2008).

In conclusion, the present study highlights the following key points. Changes in 
temperature maximum and minimum values display different behavior than changes 
in temperature range. Temperature and precipitation display different timescales of 
the periodic components and persistent main mode and variances changing in time. 
Wavelet coherence analysis shows that the relationship between temperature and 
precipitation evolves in time and suggests that it is temperature driving rainfall and 
not the other way around.
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