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Abstract The topological interconnection between grid, channel, and Peano networks is investigated by
extracting grid and channel networks from high-resolution digital elevation models of real drainage basins,
and by using a perturbed form of the equation describing how the average junction degree varies with
Horton-Strahler order in Peano networks. The perturbed equation is used to fit the data observed over the
Hortonian substructures of real networks. The perturbation parameter, denoted as “uniformity factor,” is
shown to indicate the degree of topological similarity between Hortonian and Peano networks. The sensitiv-
ities of computed uniformity factors and drainage densities to grid cell size and selected threshold for chan-
nel initiation are evaluated. While the topological relation between real and Peano networks may not vary
significantly with grid cell size, these networks are found to exhibit the same drainage density only for spe-
cific grid cell sizes, which may depend on the selected threshold for channel initiation.

1. Introduction

The importance of investigating the relations between real channel networks and theoretical network mod-
els has been extensively recognized in the literature [e.g., Howard, 1990; Willgoose et al., 1991a,b,c,d; Kirch-
ner, 1993; Rodriguez-Iturbe and Rinaldo, 1997; Rinaldo et al., 2006; Perron et al., 2012]. The theory of networks
offers a way to study complex natural structures [Albert and Barabasi, 2002; Newman, 2003]. The application
of this theory to fluvial hydrology and geomorphology allows us to define channel networks as systems
with a low degree of junction [De Bartolo et al., 2009]. This helps shaping our understanding of the mecha-
nisms that control the dynamics and evolution of natural channel networks [Perron et al., 2012]. The applica-
tion of the theory of networks to fluvial hydrology and geomorphology is grounded on the assumption that
a channel network is a typical topological structure [Shreve, 1967], where junction nodes are not located
randomly but are rather the result of relevant geophysical processes [Kirchner, 1993; Perron et al.,, 2012].
Under this assumption, the investigation of the mathematical laws describing the topology of junctions rep-
resents an effective way to identify and characterize the essential features of complex geophysical proc-
esses that underlie the formation of the channel network. Some researchers have argued that a misleading
comparison between real and synthetic networks may arise from the correspondence of topological meas-
ures based on Horton'’s ratios [Horton, 1932, 1945; Strahler, 1952, 1957, 1958] or Tokunaga’s matrices [Kirch-
ner, 1993; Rinaldo et al., 2006]. However, recent literature based on the Horton-Strahler ordering remarks the
effectiveness of the mathematical properties of river networks, which provide important insights for under-
standing fluvial landscape processes and evolution [e.g., Perron et al., 2012].

Several investigations have been carried out to characterize relevant morphometric parameters of complex
drainage basins by means of simple and multiscaling relationships of Horton's indices [e.g., Tarboton et al.,
1988; La Barbera and Rosso, 1989; Marani et al., 1991; Rinaldo et al., 1992; Rigon et al., 1993; Rodriguez-Iturbe
and Rinaldo, 1997; De Bartolo et al., 2000, 2004, 2006a, 2006b; Gaudio et al., 2006]. The Peano network is
often the key element for developing such investigations [Mandelbrot, 1977; Marani et al., 1991; Flammini
and Colaiori, 1996; Troutman and Over, 2001; Veitzer and Gupta, 2001; Tay et al., 2006]. The Peano network is
a deterministic, plane-filling fractal structure [Marani et al, 1991]. This structure can be easily generated
through an iterative algorithm in which the numbers of interior and exterior nodes of the network are com-
puted from geometrical series expansions by following strictly the Horton-Strahler hierarchy [De Bartolo
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et al., 2009]. Owing to this similarity, the Peano network has also been adopted to predict the role of hydro-
logic controls on the ecological corridors in which the reaction and transport parts can be represented by
nodes and links, respectively [Campos et al., 2006; Bertuzzo et al., 2007, 2008, 2010]. As pointed out by
Rinaldo et al. [1998], since topological properties are partial descriptors of channel networks, Peano net-
works can only be used to solve network problems, like those connected to biological invasions, in which
topology is the key determinant.

The concept of average junction degree to a given order introduced by De Bartolo et al. [2009] can be
readily incorporated into hydrological, geomorphological, and biodiversity models to provide an objec-
tive topological descriptor for the considered channel network. More specifically, the perturbation of the
law expressing the average junction degree of all substructures in the Peano network yields a suitable
analytical model of the Hortonian substructures that can be observed in real channel networks [De Bartolo
et al., 2009]. A first attempt to relate real and Peano networks was performed in De Bartolo et al. [2009] by
considering the river network of the Corace River drainage basin, Italy, extracted from cartographic blue
lines. The Peano network was found to represent the real channel network in terms of average junction
degree by displaying relative errors on the order of 1073, The results of the study reported in De Bartolo
et al. [2009] suggest therefore a more comprehensive analysis based on high-resolution topographic data
and advanced terrain analysis methods that have recently become available [e.g., Orlandini et al., 2003,
2014].

In the present study, high-resolution digital elevation models (DEMs) of eight drainage basins located in
four different geographical areas have been considered. For each drainage basin, the slope line network is
extracted from DEM data by using the D8-LTD method [Orlandini et al., 2003; Orlandini and Moretti, 2009;
Orlandini et al., 2014]. Within these slope line networks, the grid networks and the channel networks are dis-
tinguished and treated separately. The grid network is composed of all the slope lines connecting the DEM
cell centers and extend therefore along both the hillslope and channel systems. The channel network is
determined by predicting the channel heads along the slope line network and assuming that only the slope
lines extending downslope the channel heads contribute to the channel network. Channel heads are pre-
dicted by using three threshold quantities, namely the drainage area A [O'Callaghan and Mark, 1984;
Tarboton, 1997], a monomial function AS? of the drainage area A, and the local slope S [Montgomery and
Dietrich, 1988], and the Horton-Strahler order w* of slope lines [Peckham, 1995a,b; Orlandini et al., 2011].
More than one thousand network substructures have been examined in the present study. A coarse grai-
ning analysis has been performed to investigate the role of grid cell size in the extraction of both grid and
channel networks. The sensitivity of computed drainage density to grid cell size and channel initiation
thresholds is also investigated to demonstrate the impact of these quantities in drainage basin hydrology.

2. Background

2.1. Average Junction Degree of Hortonian Networks

Channel networks are usually ordered according to the Horton-Strahler hierarchy [Horton, 1932, 1945; Strah-
ler, 1952, 1957, 1958]. This hierarchy states that source streams are first order streams and that the order »
of a stream which originates from the junction of two streams of order / and k with I, k > 1 is given by

w=max (I, k) +d, (1)

where Jy is the Kronecker delta [Dodds and Rothman, 1999]. A channel network is a graph that contains no
cycles where the edges are streams and the nodes are junctions. In this configuration, it is possible to define
the junction degree of a node, k,,, as the number of its inflow and outflow tributaries. In Hortonian networks,
this number is equal to 1 for the exterior (source) and outlet nodes and it is on average equal to 3 or more
for the interior nodes. Junction degrees higher than 3 can be due to the presence of fractures or junction
faults that increase the number of tributary streams to a same junction. Once the junction degree of a node
is defined locally, it is possible to define the total junction degree of a network, /C, that is the sum of the
junction degrees computed over all n nodes. The average junction degree (k,) is defined by the ratio
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Figure 1. Sketch of eight Hortonian substructures of the second-order (w = 2) displaying a different number i of exterior (source) nodes.
The substructure with i = 2 reported in Figure 1a represents the minimal configuration for a Hortonian substructure of order o = 2.

In the definition of the average junction degree, the meaning of “degree” is consistent with the terminology
used by Albert and Barabasi [2002] and Newman [2003], and must not be confused with the “junction angle”
discussed by Horton [1932, 1945] and, more recently, by Howard [1971, 1990].

In the graph that represents the channel network ordered according to the Horton-Strahler ordering
scheme, we can identify subsets of connected streams which are maximal with respect to the property that
each stream is of order not greater than w. These subsets are denoted as substructures of order w. For each
substructure of order w, we can count the number i of its source nodes (the channel heads) and then com-
pute the average junction degree of the substructure as

2i—1
i

<kn> = 3)
[De Bartolo et al., 2009]. It can be shown that the average junction degree, (k,), can vary for each substruc-
tures of the same w order and for i source nodes. For instance, seven substructures of the second-order
(w = 2) displaying a different number i of source nodes, ranging from 2 to 8, are shown in Figure 1. The
graph with i =2 represents the minimal network structure (Figure 1a). In these cases, where @ =2, (k)
ranges between 1.5 and 1.875 (Figures 1a and 1g, respectively). It can be verified that in the case of large
trees characterized by a very high number of nodes, (k,) approaches 2 [Albert and Barabasi, 2002; De Bar-
tolo et al, 2009]. The average junction degree (k,) can be used to compare networks having the same
order. It is specified here that the value of (k,) computed over a network having order Q cannot be used
singly to evaluate the internal topological properties of the network. In fact, (k,) is a global descriptor which
may display comparable values for different networks. Hence, (k) can be used singly to only indicate topo-
logical dissimilarity. The internal topological properties of the network are, however, indicated by the varia-
tion of the average junction degrees (k,) over all the substructure having orders w=1, ..., Q. This variation
may be represented by a single parameter as reported in section 2.3. In addition, as noted by Rinaldo et al.
[1998], topologically similar networks may not play a comparable role in the description of all flow and
transport processes. Under this light, it is acknowledged here that the average junction degree and the
derived topological descriptors should be used as indicators of network topological similarity/dissimilarity
or, in the broadest sense, of network dissimilarity only.

The variation of the average junction degree (k,()) across all the channel network substructures, from the
first-order (w = 1) to the maximum order (v=Q), provides an objective topological characterization of the
entire channel network. This characterization can be synthesized by interpolating the values of (k,(w))
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105 computed numerically with a functional
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g E oom=2 relationship. This relationship, as we shall
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é C Oo eter. In general, the average junction
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Figure 2. Occurrences of Hortonian substructures n(w, i) having order o (w= nodes [De Bartolo et al., 2009]. For each

2,3,4) and i exterior (source) nodes (1 < i < 50). These occurrences are com- . .
} ) - ) ) fixed order , the number j varies from

puted by using, for instance, the 1 m digital elevation model of the real drain- i i

age basin RC3 introduced in section 3 (Figure 6) and the orders w=2, 3, 4. 297" to 27 '+L—1, where L is the Iength

of the vector of occurrences
n(w)=[n(w,2°7"),n(w,2°7"+1),...,n(w,2° " +L-1)],
n(w,22 1 +L—1) # 0,
and
n(®,j)=0,

for any j > 2”7 "+L. In the definition of n(w), the values n(w, i) as well as the values n(w,) do not appear
since they are all vanishing. The quantities n(w, i) display different behaviors for different orders w. As
shown for instance in Figure 2, for w = 2, n(2, i) displays a decreasing exponential trend. For w = 3, n(3, i)
shows an unimodal trend limited to a narrow range of i, whereas for @ > 4, n(w, i) displays an unpredict-
able behavior (Figure 2). It is important to note that (k,(Q))=(k,) due to the requirement of maximality in
the definition of substructures and for each w=1,...,Q, (k,(w)) is a rational number.

A topological characterization of a channel network having order Q can be provided by computing the
average junction degrees (k,(w)) of all the network substructures having orders w=1, ..., Q through equa-
tion (4). A single parameter can be used to represent the variation of (k,) over these substructures as
reported in section 2.3. The discriminatory power of (k,) can be found in the preasymptotic range, that is
for moderate values of the order w, where (k,(w)) belongs to the range

2X2971—1

Two fundamental features of the discrete function (4) are (1) the initial condition given by (k,(1))=1
and (2) the asymptotic condition given by lim,,_.. (k,(w))=2. More details on the asymptotic properties of
(kn(w)) can be found in De Bartolo et al. [2009].

2.2. Average Junction Degree of the Peano Network

The Peano network is a deterministic plane-filling network with fractal dimension equal to 2 [Mandelbrot,
1977; Dekking, 1991]. The Peano network has been extensively studied by hydrologists. Marani et al. [1991]
have shown analytically that the width function of the Peano network is a deterministic binomial multiplica-
tive process having partition parameter equal to 1/4. This have hydrological implications as slight perturba-
tions in the network length structure (topology remaining the same) determine large variations of the
width function [Veneziano et al., 2000]. As also mentioned in section 1, the use of the Peano network has to
be qualified by acknowledging that the topological characterization of real and Peano networks only pro-
vide a partial picture of relevant channel network features affecting hydrologic response and transport
processes [Rinaldo et al., 1998].
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The Peano network of order o can be

(1) a (1) b (1) constructed through an iterative pro-
cedure as sketched in Figure 3. Specifi-
cally, at the order w=1 it is

(4) represented by a single segment
stream, the initial generator segment,
with only two exterior nodes (Figure
3a). The Peano network at the order
w =2 is obtained by crossing, at right
angles and in the middle point, the ini-

(0 =1) (1) (1) (0 =2) (1) tial generator segment with another

segment stream, and then it is consti-
tuted by four segments and five
nodes, four exterior nodes, and one

c d
internal node (Figure 3b). To obtain
the Peano network at the order w =3
we cross, at right angles and in the
middle point, each segment of the
Peano network at the order «» = 2 with
another segment stream so as to
obtain a channel network formed by
16 segments, 12 exterior nodes, and 5
interior nodes (Figure 3c). This proce-
(0=3) (0 =4

dure can be iterated and the number
of segments and junction nodes eval-

. i ) uated (Figure 3d for o = 4). Structural
o exterior (source) node e interior node moutlet  ; ameters of the Peano network can

be calculated from recursive relation-
Figure 3. Construction of the Peano network having Horton-Strahler hierarchical hi din A dix A 1
order equal to four. The numbers of connections to interior and exterior nodes ships as reported in Appendix A. In a
are reported, for instance, at the first and second steps reported in Figures 3a and Peano network, the junction degree of

3b, respectively. a node, k,, is equal to 1 for the exterior

(source) and outlet nodes, and it is
equal to 4 in the interior nodes. Hence, Hortonian and Peano networks are topologically different at the
local scale. At the arbitrary stage of generation Q, and for a generic order  (w=1,...,Q), it can be
obtained from equation (2) that the average junction degree for the Peano network is

k()= # @)
1

In equation (7), the numbers of exterior and interior nodes are obtained through the equations (A7) and
(A8), respectively. It is important to observe that equation (7) yields rational values of k,(w)) for w > 2 [De
Bartolo et al., 2009]. Relation (7) is the foundation for the analytical model of the average junction degrees
displayed by Hortonian substructures in real channel networks as shown in the next section.

2.3. Analytical Model of the Average Junction Degree
In this section, we introduce an analytical model of the average junction degree (k,(w,y)) obtained by per-
turbing equation (7) as given by

2

1+ (%)(0*1 ?

(kn (e, 7)) = (8)

The perturbation parameter y > 0 is denoted as “uniformity factor.” This model makes it possible to param-
eterize both real and theoretical networks. We note that the function (8) satisfies the initial condition (1)
mentioned in section 2.1 for any y > 0, and the asymptotic condition (2) mentioned in section 2.1 for any
y > 1/2.This means that there are no channel networks with y < 1/2, whereas for y=1/2 we simply config-
ure an unrealistic network composed of source node segments only. In addition, equation (8) assumes
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—~ 29 —— T rational values when 7y is a rational num-
- L 1 ber as also implied by equation (4). As
F

< 2.0F JUPCR Sal ol Sl Sl St ik o | also noted in section 2.2, Hortonian and
~ r ,f ] Peano networks are topologically differ-
8 1.8 /// B ent at the local scale. However, they may
B) 1.6+ ] be topologically similar in global terms of
8 =T i average junction degrees (k,) and uni-

¥

c 1.4} . formity factor y. As shown in Figure 4, the
o 3 ,’;" . average junction degree has little discrim-
= K e y=20 : . ~

CC) 1.2 I inatory power in the asymptotic range,
S v Y= 1.5 - namely for structures having orders o
a 1.08- -y = 2.5 7 greater than 4. However, the average
(% 0.8 T T T T N T junction degree is effective in discriminat-

12 3 45 6 7 8 9101112  ing network structures in the preasymp-

totic range, namely for structures having
order w less than or equal to 4, and this

) o o ) has a significant effect on the value of the
Figure 4. Sensitivity of the average junction degree (k,(w, 7)) given by equa- . it . . .
tion (8) to the perturbation parameter y for Hortonian substructures having uniformity  factor, which is directly
order o ranging from 1 to 12. Solid circles refer to the case y = 2 (Peano net- affected by the values of the average
work). The bars indicate the variability obtained by varying y from 1.5 (lower junction degree displayed by substruc-
bound) to 2.5 (upper bound). . .

tures in the preasymptotic range. In order

to compare a generic Hortonian network with the Peano network of the same order Q, the focus has to be
put on the totality of substructures of these networks having order w=1, ..., Q. For the Peano network, the
average junction degree can be computed directly from equation (7). The perturbed equation (8) offers a
suitable means for modeling real Hortonian networks, where the parameter y is computed from a nonlinear
regression over the average junction degrees of all Hortonian substructures. The uniformity factor y is the
means for capturing the discriminatory power displayed by the average junction degree in the preasymp-
totic range of Hortonian substructures.

substructure order, o (-)

Relation (8) provides a further development of the relationship found by De Bartolo et al. [2009] as it con-
nects (k,(w, 7)) and w through the single parameter y. The parameter y provides a measure of dissimilarity
(or topological similarity) between a real channel network and the Peano network. The case of the Peano
network (equation (7)) can be recovered from equation (8) with y = 2. For any real channel network the val-
ues of y is obtained from a nonlinear regression of the relationship (8) on the data points (w, (k,(®))) with
(w=1,...,Q) computed on extracted Hortonian substructures. In fact, the perturbed equation (8) provides
an analytical model of real channel networks as characterized by their Hortonian substructures.

The values of (k,) provided by equation (8) display sensitivity to the variation of y around 2 that vary with the
order w. In fact, according to the first-order Taylor series approximation, we can replace the equation (8) with

k(@ 3+67)) = (ko0 y>>+diy<kn<w, ST+, ©)
where
d 2-0(1) (1)
dﬁ/<k( 7/)> W (10)

On the basis of equation (10), it can be found that, for a neighborhood of y = 2, the maximum variation of
(kn(w,y)) occurs for w = 2. Gradually decreasing values of d{(k,(w,y))/dy can be obtained for orders
® > 2. In Figure 4 the values of (k,(w,y)) versus w, with y ranging from 1.5 to 2.5, are reported.

2.4. Drainage Density of Peano Grid and Channel Networks
The drainage density for a generic Peano grid network and for a Peano channel network is equal to

and
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Ly
DC:TC7 (12)

where A represents the Peano basin area, while Lg) and Lgc) are the total segment lengths of all orders in
grid and channel networks, respectively. The analytical expressions of these total lengths are provided in
Appendix B. Specifically, in equation (12) the total length, Lgc) depends on the threshold method used to
extract the Peano channel network, as given by equations (B9) and (B13). It is important to observe that,
in the case of Peano grid network, the limits of h — 0 and h — oo imply a divergence of measure, namely
D(h — 0)=o00 and D(h — c0)=0, respectively.

As detailed in Appendix B, the drainage density of the Peano network, generated as a grid or a channel net-
work over a grid domain having size 2"X2" (n=1,2,...), can be evaluated as the total length of channels of
all orders w (equations (B4), (B9), and (B13)) per unit area of the Peano basin (272" xh?). In fact, as shown
in Figure 5, the Peano grid network, and consequently the Peano channel network, can only be constructed
on square grid domains having size 2" X2". As suggested by Tucker et al. [2001], maps of drainage density D
can be computed from digital terrain data as D=1/(2L), where L is the mean hillslope-to-channel length
along drainage paths. Averaging length-to-channel over an appropriate spatial scale makes it possible to
derive continuous maps of D and its spatial variations. This method is consistent with the standard defini-
tion of drainage density, defined by Horton [1932] as the total length of channels per unit area, which is
directly used to compute the drainage density at the drainage basin scale in the present study.

In the case of Peano grid network, the maximum order Q is related to the exponent n in the grid domain
size through the relation

Q=n+1. (13)

Therefore, Q does not depend on the grid cell size, h, but only on the grid domain size. In the case of a
generic Peano channel network, the first parameter that has to be defined is the threshold quantity for
channel initiation (Figure 5). Only the drainage area A and Horton-Strahler order * can be used as thresh-
old quantities, because the local slope S used in the slope-area quantity AS? in undefined in Peano grid net-
works, which grows on a 2-D plane. The threshold value A; is linked, in the case of the Peano grid network,
to the grid cell size h through the equation

A=4"h?, (14)

where the exponent m is a fixed integer ranging between 1 and Q. If m is fixed, then the maximum order
Qc of the Peano channel network is obtained by the equation

QC=Q—m. (1 5)
For a fixed threshold value wj, the maximum order Qc of the Peano channel network is given by

Qc=0-w;. (16)

3. Numerical Experiments

3.1. Hortonian Substructures Analysis

To investigate the average junction degree to the order w, we analyzed grid and channel networks
extracted from grid DEMs by using the D8-LTD method [Orlandini et al., 2003, 2014]. The grid networks are
determined by connecting all grid cell centers along the determined surface slope paths [Orlandini and
Moretti, 2009]. As also mentioned in section 1, the channel networks are obtained from grid networks by fil-
tering the cells that display a value of the drainage area A, of the slope-area function AS? or of the Strahler
order »* less than fixed threshold values A, (AS?),, and o}, respectively. This procedure was repeated for
different resolutions h, from 1 to 50 m, obtained by coarse graining the original 1 m DEM. Eight drainage
basins, namely the RC1, RC2, RC3, TC1, TC2, TC3, GM1, and AP1, were analyzed. The locations of the real net-
works considered in the present study are reported in Figure 6. The RC1, RC2, and RC3 are subbasins of the
Rio Cordon drainage basin and are located in the Italian Alps, Italy. The TC1, TC2, and TC3 are subbasins of
the Crostolo River drainage basin and are located in Italian Apennines. The GM1 is a drainage basin of the
Gabilan Mesa region located in California, USA. The AP1 is a drainage basin of Allegheny Plateau region
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Figure 5. Peano grid (Figures 5a and 5b) and channel (Figures 5c and 5d) networks generated in grids with 2* X2 cells and resolution h = 1 m (Figures 5a and 5c), or in grids with 23X

23 cells and resolution h = 2 m (Figures 5b and 5d). Peano channel networks were obtained by setting the threshold area A, equal to 16 m.

located in Pennsylvania, USA. In this last case, the extraction procedure was repeated for the resolutions
obtained by coarse graining the original 2 m DEM. The areas of RC1, RC2, RC3, TC1, and TC2 subbasins are
equal to 0.455, 0.081, 0.708, 0.152, and 0.121 km?, respectively, whereas the areas of GM1, AP1, and TC3
subbasins are greater and are equal to 1.81, 3.91, and 87.3 km?, respectively.

The channels observed in the RC1, RC2, and RC3 drainage basins can be classified as colluvial, bed-
rock, and alluvial channels [Orlandini et al, 2011]. The colluvial incisions are small headwater channels,
exhibiting a weak or ephemeral transport capacity [Montgomery and Buffington, 1997]. The alluvial
channel network is dominated by erosional and depositional processes controlled mainly by local slope
changes, where the sediment forming the channel bed can be transported and organized during
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Figure 6. Location and representation of the real networks considered in the present study.

floods. In the drainage basins TC1, TC2, and TC3, both colluvial and alluvial channels were surveyed,
with dominance of colluvial channels in TC1 and TC2, and alluvial channel in TC3. In the drainage
basins GM1 and AP1, smooth, soil-mantled slopes surround partially vegetated channels incised into
colluvium [Perron et al., 2012]. The lidar surveys were all carried out, during snow-free conditions. Lidar
data and high-resolution aerial photographs were acquired from a helicopter or an airplane. In the
RC1, RC2, and RC3, the survey design point density was specified to be greater than 5 points/m?
recording up to four returns, including first and last. The mean absolute vertical accuracy, evaluated
by a direct comparison between lidar and ground DGPS elevation points, was estimated to be less
than 0.3 m [Pirotti and Tarolli, 2010]. The lidar data for the TC1, TC2, TC3, GM1, and AP1 drainage
basins display a similar accuracy. The lidar bare ground data set was used to generate accurate 1 or
2 m DEMs. The natural neighbor technique was used for this operation [Sibson, 1981].

The threshold parameters (A, (AS?),, and w;) were evaluated from accurate observations of channel heads,
both of the subbasins of the Cordon River and of the Crostolo River (TC1 and TC2). A total of 52 channel
heads were mapped using field survey through a differential global positioning system (DGPS) system. The
threshold conditions were defined from an overlap of the channel heads observed on the grid networks
extracted by using the D8-LTD method. The channel networks of the TC3 were obtained, for the different
grid cell sizes, by imposing as threshold values the averages of the threshold values obtained in the TC1
and TC2 subbasins. This assumption was essentially made for two reasons. First, the large extension of the
TC3 implies a prohibitive cost of extensive field surveys for the localization of the channel heads. Second,
lithology, morphology, and land use was found to be reasonably homogeneous across the entire subbasin.
The channel networks of the GM1 and AP1 drainage basins were determined by searching the best agree-
ment between the channel networks extracted from digital elevation models at the finest available resolu-
tions and the channel networks revealed visually in the digital elevation model hillshades. Grid cell sizes of
1 and 2 m were used for the GM1 and AP1, respectively. At these fine resolutions, the hillshades of the GM1
and AP1 drainage basins were found to highlight clearly the morphology of channels and, specifically, the
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regression based on equation (8) over observed values of

(kn(@2)).

heads of these channels. The values of the threshold
quantities for channel initiation were varied in the
channel network extraction program and the best val-
ues were simply obtained by applying a trial-and-error
procedure.

A total of 1008 real channel network structures were
analyzed. These structures were hierarchized through
the Horton-Strahler ordering system and compared
with the Peano network. The outlet orders obtained
by this classification procedure are between 3 and 12
for the grid networks, and between 2 and 10 for the
channel networks. The first step was to evaluate the
number of network substructures obtained from the
hierarchization procedure. This number, for each sub-
basin structure and for all spatial resolutions ana-
lyzed, is a function of the hierarchical order w, and
presents a decreasing exponential trend whose maxi-
mum values appear to be in correspondence to the
network magnitude, that is the number of exterior
nodes in the network [Horton, 1945; Giusti and Schnei-
der, 1965; Shreve, 1966a,b; Peckham, 1995b]. Regard-
ing the grid networks, it was observed that the
substructures n(2, i) have a decreasing trend of occur-
rences for all network subbasin structures analyzed
(2). In contrast, for the network substructures n(3, i),
we found a unimodal trend limited to a narrow range,
between 5 and 10, of i source nodes for all network
subbasin structures examined (Figure 2). Specifically
these trends are univocal in correspondence to the
maximum spatial resolution, 1 m, and anyway well-
defined up to the spatial resolution of about 7 m for
the RC1, RC2, RC3, TC1, and TC2 network subbasin
structures, and for all the resolutions in the case of
TC3, GM1, and AP1 network subbasin structures. In
the case of the channel networks of the RC1, RC2,
RC3, TC1, and TC2, this behavior presents a unpredict-
able trend for both w =2 and @ = 3. It was observed
that the number of network substructures, to the sec-
ond hierarchical order with i source nodes, decreases
as the number of source nodes increases, as in the
case for grid networks. Similar behaviors were
observed for the TC3, GM1, and AP1 channel net-
works, owing to the high number of network sub-
structures obtained for both w =2 and w = 3. These
results agree with the values found by Giusti and
Schneider [1965] and Shreve [1966a,b] in the context
of the distribution of branches in Hortonian river
networks.

3.2. Estimation of the Average Junction Degree
Once all substructures of order w with i source nodes

are identified, the average junction degree (k,(w)) was calculated directly through the equation (4), for all
the hierarchical orders w. The case of the RC1 is reported, for instance, in Figure 7. Error bars were estimated
by computing the error ¢ in the counting of Hortonian substructures with i source nodes as given by
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This error was evaluated by means of a Poisson distribution of the n(w, ) counting, with a corresponding
error \/n(w, i) and then propagated through the usual techniques of asymptotic expansion [Taylor, 1997].
Finally, the relative differences between the values of (k,(w)) obtained for Hortonian substructures and
those obtained for the corresponding Peano networks were calculated. It was obtained from the analysis of
grid networks, for all analyzed grid cell sizes, that the numerical values of the average junction degree corre-
sponding to w = 2, are in the range between 1.553 and 1.756 for the RC1, RC2, RC3, TC1, and TC2 network
subbasin structures, with average equal to 1.625, and between 1.616 and 1.665 for the TC3, GM1, and AP1
subbasin structures. Instead, in the case w = 3, they are between 1.878 and 1.968 for the RC1, RC2, RC3,
TC1, and TC2 network subbasin structures, with average value equal to 1.901, and between 1.858 and 1.930
for the TC3, GM1, and AP1 network subbasin structures.

€=

The descriptor (kn(w)) assumes, for all network structures analyzed, values greater than 1.955 for the
remaining hierarchical orders and tends asymptotically to 2 in correspondence to hierarchical closure orders
of the entire networks extracted. Regarding the values of the error bars and of the relative differences com-
pared to Peano, the eight structures of the grid networks showed values, for all » orders, ranging between
1077 and 1072, and between 1077 and 107", respectively. For the channel networks extracted by using the
three thresholds (A, AS?, and "), the numerical values of the (k,(w)), relatively to w = 2, are between 1.500
and 1.875 for the RC1, RC2, RC3, TC1, and TC2 network subbasin structures, with average equal to 1.648,

and between 1.500 and 1.888, for the TC3, GM1,

. and AP1 network subbasin structures. For the RC1,
Table 1. Values of the Uniformity Factor y for the Crostolo Chan-

all Nsiare RC2, RC3, TC1, and TC2 substructures at the w = 3,
h (m)® 72 SE? EV (X1075)° instead, the values range between 1.750 and
1 2086 0.004 0.054 1.974, with average equal to 1.886. In the case of
2 2,047 0.018 1.200 TC3, GM1, and AP1 channel networks, these values
3 2058 0014 0.730 range between 1.795 and 1.976. For the remaining
4 2.065 0.007 0.170 - ) ) ;
5 2.043 0.011 0.430 hierarchical orders and to the hierarchical closure,
6 2.058 0.008 0.230 the descriptor assumes values greater than 1.941
7 2.060 0.008 0.250 .
2 g D o and tends asymptotically to 2. The values of the
9 2,088 0.008 0.200 error bars and of the relative differences with
@ 2.110 0.006 0.130 respect to the Peano networks, the eight struc-
11 2,092 0.004 0.061
o 2168 S ons tures of the channel networks showed values, for
13 2,098 0.006 0.120 all w orders, ranging between 107¢ and 107",
14 2.116 0.011 0.420
15 2.138 0.005 0.063 3.3. Estimation of the Uniformity Factor
16 2.114 0.006 0.130 . . .
- i S B - The est|r~nated values of the uniformity factor 7,
18 2,086 0.008 0.230 namely 7 in the numerical cases, obtained from
19 2.090 0.004 0.041 the perturbed model (8), for each set of extracted
20 2,082 0.004 0.057 H . b ¢ ord 1 o
o1 5,086 0007 0180 ortonian substructure of order o (w=1,...,Q),
22 2,079 0.009 0.270 were computed by using a nonlinear regression
5431 i?g: g'g?z g';?g on the computed data points (, (k,())). This
25 2144 0023 1500 procedure was based on a nonlinear least squares
26 2.128 0.007 0.150 “gradient” method algorithm included in Mathe-
Z 21128 Qe 02 matica (Version 9.0). In Table 1, the results regard-
28 2.103 0.017 0.890 ) -
29 5.098 0.007 0.160 ing the TC3 channel network generated by using a
30 2126 0.010 0.090 threshold on w* are reported as an example. Spe-
35 2.124 0.008 0.190 . . .
o By s o cifically, estimated asymptotic Yalue (EAV)f the
45 2.149 0.009 0.260 standard error (SE), and the estimated variance
50 2.173 0.019 0.110 (EV), are reported. Similar values were obtained for
2h: grid cell size; 7: estimate asymptotic value for the uniform- all the other drainage basins. In Figure 7, the aver-
ity factor 7; SE: standard error; EV: estimated variance. age junction degrees (k,(w)) calculated for the
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Figure 8. Uniformity factor 7 and drainage density D for the
real and Peano grid networks analyzed.

RC1 grid network substructures (equation (4)) have
been reported along with the related error bars (equa-
tion (17), the estimated average junction degrees (k7 (w))
(equation (8)), and the values of the calculated for the
Peano deterministic network (equation (7)). For each
examined case, the value of (k7 (w)) lies in the error bars
of the average junction degree (k,(w)) calculated from
equation (4).

As shown in Figures 8 and 9, the parameter 7 was
found to vary with the grid cell size h. For the grid and
channel networks, the trends of 7 evaluated for differ-
ent grid cell sizes are reported in Figures 8a and 9a-9c.
More specifically, for the grid networks of the RCT,
RC2, RC3, TC1, and TC2 drainage basins, 7 decreases as
grid cell size decreased, on average for h lying
between 1 and 3 m, and is essentially constant for grid
cell sizes ranging between 3 and 10-15 m (Figure 8a).
In contrast, the trend of TC3 network subbasin is differ-
ent, which showed, a decreasing trend of 7, with an
asymptotic behavior for grid cell sizes lying between
10 and 30 m (Figure 8a). Instead, the values of
observed for grid cell sizes lying between 30 and 50 m
tend to increase and to depart from the values
obtained for the Peano network (Figure 8a). A similar
behavior was observed in the GM1 substructures,

where the values of 7 tend to decrease until grid cell size h are about equal to 10 m and to increase for grid
cell sizes in the range between 20 and 25 m (Figure 8a). In the case of AP1 substructures, the values of §
tend to increase for grid cell sizes ranging between 2 and 5 m, whereas the values of 7 decrease until the
grid cell size 20 m is reached. Finally, these values are constant for grid cell sizes ranging between 20 and
30 m and tend to increase for grid cell sizes ranging between 30 and 50 m (Figure 8a).
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Figure 9. Uniformity factor j and drainage density D for the real and Peano channel networks analyzed, as obtained from the A, AS”> and * threshold methods.
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Standard deviations of the averaged values are used to calcu-
late the lower and upper limits of uncertainty bars.

50 m is reached. These fluctuations are clearer when t

Generally, in the channel networks extracted by apply-
ing the three methods for channel initiation men-
tioned above, the 7 trend appears to be constant until
the grid cell size of about 1 to 10-15 m is reached, for
the RC1, RC2, TC1, and TC2 networks (Figures 9a-9c¢).
Differently, the RC3 network assumes a fluctuating
trend in response to changes in grid cell size. The case
of the TC3 subbasin shows a constant trend of the uni-
formity factor 7 in the first 8-10 m, regardless thresh-
old method used. The GM1 and AP1, for grid cell sizes
less than 10 m, showed the same trend of TC3. The
trend of 9 depends in any case on the threshold
method used (Figures 9a-9c).

As shown in Figure 10, the average values of the uni-
formity factor 7 computed over all river structures ana-
lyzed show a more defined trend. Specifically, in Figure
10a it is shown the behavior of } in the case of grid net-
works. In this case, the uniformity factor assumes a
decreasing trend for grid cell sizes lying in the range
between 1 and 10 m, and fluctuating trends until to the
grid cell size of 30 m is reached. The values of 7 obtained
for grid cell sizes ranging between 30 and 50 m display a
constant trend. Regarding the channel networks, instead,
as reported in Figures 11a-11c, the average values of the
uniformity factor 3 show for the thresholds (AS?), and
o;, a constant trend for grid cell sizes ranging from 1 to
8-10 m and a fluctuating trend until the grid cell size of
he threshold w; is used (Figure 11c). The constant trend

behavior is better defined with respect to the case in which the threshold (AS?), is used (Figure 11b). When the
threshold A, is used, this behavior display less variability for grid cell sizes ranging from 1 to 30 m.
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Figure 11. Average uniformity factor 7 and average drainage density D for the real and Peano channel networks a
ard deviations of the averaged values are used to calculate the lower and upper limits of uncertainty bars.

0 10 20 30 40 50 60 70
grid cell size, h (m)

nalyzed, as obtained from the A, AS? and w* threshold methods. Stand-
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3.4. Estimation of the Drainage Density

The coarse graining analysis reported above has focused on the variation of the parameter 7 with grid cell
size in high-resolution DEMs for both Hortonian and Peano networks. The relation between grid, channel,
and Peano networks can be further investigated by analyzing the variation with grid cell size of the drain-
age density, D, which is a measure of the length of stream channel per unit area of drainage basin. Numeri-
cally, this geomorphological feature is calculated by using the relationships

77T S 7&)7 S Nwzw
s ZZA _Z Ag 18)

where L7 is the total length of the channels of all orders within river basin, Ag is the total area of the basin
to greater order Q, while Ng and L,, are the average number and length of the streams of order w, respec-
tively [Bras, 1990]. In the Peano networks, the drainage densities can be calculated by using the relation-
ships (11), (B11), and (B12), for Peano grid and channel networks and depending on the considered
threshold condition for channel initiation. Peano networks are generated on a square drainage basin having
extension of about 67 km? (a comparable extension to the largest real drainage basin considered) for grid
cell sizes of 1, 2, 8, 16, 32, and 64 m. These quantities are compatible with the requirement reported in sec-
tion 2.4 that the grid domain size is 2" X2" with n=7,...,13.

It is observed that the drainage density D decreases as the grid cell size h increases, for both channel and
Peano networks. This behavior is clearly shown in Figure 8b. It is important to observe that the drainage
density in the Peano grid case overlaps the curves obtained from analysis of D for the observed natural net-
works. The values of drainage density, by construction of the same Peano network, are lower than the val-
ues obtained for the natural networks analyzed, for the small values of h. This result is, however, consistent
with the limit D(h — 0)=o0. The drainage density behavior shown in this study was observed in many stud-
ies reported in the literature [e.g., Tarboton et al., 1988, 1991], Bras [1990], Helmlinger et al. [1993], Dodds
and Rothman [1999], Yang et al. [2001]. In the case of Crostolo channel network TC3, the values of drainage
density preserve an affine behavior with the uniformity factor for grid cell sizes ranging from 1 to 25 m (Fig-
ure 8a and 8b). In addition, the average values of the drainage density D show on average for all river struc-
tures the same behavior observed for each channel network analyzed. These values, in fact, are almost the
same for all natural channel network and for all spatial resolutions (Figure 10b).

Furthermore, the drainage density behavior is found to depend on the thresholds on A, AS?, and o*. Also
for this channel-scale representation, the results agree with those observed in Bras [1990], Helmlinger et al.
[1993], and Dodds and Rothman [1999]. These researchers have shown that there is an effect of the parame-
ter choice on the morphometric properties of the river basin. For example, in addition to the drainage den-
sity, also the scaling properties of channel networks are affected by the spatial scale selected. In particular,
according to Dodds and Rothman [1999] and Tucker et al. [2001], the uniform drainage density may also be
interpreted as the observation that the average distance between channels is roughly constant across a
landscape. This is due to the fact that there is a finite limit to the channelization of a landscape determined
by a combination of soil properties and climate. Furthermore, the average distance between streams being
roughly constant implies that, on average, tributaries are spaced evenly along a stream. Implicit in this
assumption is that the channel network has reached its maximum extension into a landscape [Dodds and
Rothman, 1999]. These characteristics, by virtue of the topological properties of river networks [De Bartolo
et al., 2009], are preserved also for junction nodes and then a proper analysis of the average junction degree
is congruent.

At channel scale, it is possible to observe that the channel river networks extracted by using a threshold on
the drainage area A show a less variable trend in the first 10 m than those observed for the channel net-
works extracted by using thresholds on w* and AS? which show some peaks at high resolutions (Figures
10d-10f). In the case of the Crostolo channel network TC3 extracted by using a threshold on A, the affinity
behavior with the parameter y is more evident in the previous scaling range (Figures 9a and 9d). Therefore,
in the context of coarse graining and when the threshold on A is used, the two parameters appear to be
affine, showing a same trend with grid cell size for the fine-resolution river structures. Also in this case, as a
result, it is observed that this uniformity factor 7 appears to be confined in a precise scaling range of cell
measures restricted between 1 and 10 m. In fact, according to Dodds and Rothman [1999], this metric
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homogeneity/uniformity is representative since some fundamental features of these structures were
removed by coarse graining the small grid cell sizes. In terms of topography, this behavior confirms, as the
results previously obtained, the existence of an invariant scaling range that is indicative of a correct extrac-
tion criterion of channel network for both grid and channel scale in addition to the equivalence between
the drainage density, D, and the uniformity factor .

Furthermore, at the channel scale, the drainage density was calculated on the Peano channel network
obtained by filtering the segments of the Peano grid network and by using thresholds on the drainage area
A and on the Horton-Strahler order *. The threshold values used, in terms of A; and o;, are in the ranges
between 64 and 4096 m?, and between 2 and 5, respectively. Analyzing the plots in Figures 11d and 11f, for
all natural river networks, it is possible to observe that the drainage density remains on average almost con-
stant. It is also observed that values of D are greater than those obtained for the Peano channel network,
with the exception for small grid cell sizes. Finally, the threshold on A has shown a higher level of constancy
and stable values of D for variable grid cell size.

4. Discussion

The relation between grid, channel, and Peano networks was investigated in the present study by analyzing
the networks extracted from high-resolution digital elevation models data based on lidar surveys of eight
real drainage basins located in four different geographical areas (section 3, Figure 6). The concept of aver-
age junction degree (k,) and the related concept of uniformity factor y used in the present study (section
2) were shown to have discriminatory power for the topological characterization of theoretical and real net-
works in the preasymptotic range of Strahler orders w, that is for moderate values of w ranging between 2
and 4 (Figure 4). This is relevant to the characterization of all channel networks because Hortonian substruc-
tures with w equal to 2, 3, and 4 are numerous in real drainage networks (Figure 2). However, since (k,) and
y are partial topological descriptors of channel networks, the results reported in the present study can only
be used to evaluate topological similarity or, if the evaluation is made a broader sense, dissimilarity between
considered networks (Figures 7-11). The topological analysis based on (k,) and y reported in the present
study is complemented, therefore, with the investigation of the drainage density D, which is one of the
most relevant morphometric properties of channel networks in drainage basin hydrology (Figures 8-11).

Grid networks extracted from real topographic data display mostly values of y greater than 2, which is the
value associated to large Peano networks (Figures 8 and 9). On the basis of the analytical model (7) relating
(kn) and y and of the sensitivity of (k,) to y illustrated in Figure 4, it can be inferred that Hortonian grid net-
works with y > 2 display generally greater values of (k,) in the preasymptotic range and thus a smaller frac-
tion of exterior (source) nodes than Peano grid networks (section 4, Figure 8a). In fact, as noted in section
2.1, in Hortonian networks the junction degree k,, is equal to 1 for the exterior (source) and outlet nodes
and it is normally equal to 3 for the interior nodes, being k, > 3 observed only when fractures or junction
faults occurs, whereas, as noted in section 2.2, in Peano networks k,, is equal to 1 for the exterior (source)
and outlet nodes and it is equal to 4 in the interior nodes. Hence, given that k, in interior nodes is generally
smaller in Hortonian networks than in Peano networks, an average junction degrees (k,) greater than 2 (the
value associated to Peano networks) indicate a smaller fraction of exterior nodes than in Peano networks.
The average values of y displayed by real grid networks show a defined trend only for small values of the
grid cell size h, with differences with respect to the value 2 of the Peano grid network that increases as h
decreases (Figure 10a). This is likely to be connected to an increase of the degree of branching displayed by
grid networks and well captured by the D8-LTD flow direction method [Orlandini et al., 2003].

All the grid networks examined display the same trend of D with h (Figures 8b and 9b). This trend is clearly
connected to the control on D of the representation of drainage paths at the elemental cell scale, consis-
tently with Tucker et al's [2001] definition of drainage density mentioned also in section 2.4. In fact, the val-
ues of drainage density D reported in Figures 8b and 9b are explained by the relation D=1/(2L) with mean
hillslope-to-channel length L ~ h/2, and support therefore the morphometric equivalence between Tucker
et al’s [2001] relation and the original definition of drainage density given by Horton [1932] and used in the
present study (section 3.4, equation (18)). The observed increase of D (from about 0.02 to 1000 km ') as h
decreases (from 50 to 1 m, respectively) suggests that caution must be exercised when representing surface
flow propagation along hillslope systems in detailed distributed hydrologic models [e.g., Camporese et al.,
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2010]. The strong variability of D needs to be controlled in order to make surface flow and transport proc-
esses along hillslope systems independent from the selection of the structural parameter h.

Channel networks extracted from real topographic data by using thresholds for channel initiation on
drainage area A, area-slope function AS? and Strahler order w* display both values y >2 and 7y < 2,
revealing that these channel networks do not necessarily display smaller fractions, respectively, of exte-
rior nodes with respect to the corresponding Peano channel networks (Figure 9). An impact on the
fraction of exterior nodes and related values of (k,) and y is also exercised by the selection of the
threshold for channel initiation (Figures 9 and 11). The use of A and AS? yields a more robust scale
invariance of average values of y with h than the use of w* (Figures 9a-9¢, 11a-11c). For any selected
threshold for channel initiation, the obtained values of y display significant fluctuations and large
uncertainty bars, suggesting that the interrelationship between the characteristic scales of variability of
land surface topographies and h may play a role.

The values of D displayed by real channel networks are found to vary significantly across different geo-
graphical areas (Figures 9d-9f). These values of D are mostly bounded between the corresponding values
of Peano channel networks (lower bounds) and of Peano grid networks (upper bounds) as shown in Figures
11d-11f. The average values of D over the real drainage basins display well-defined trends with h, indicating
that D assumes the same value as the Peano channel network for small values of h around 1-2 m, and the
same value as the Peano grid network for large values of h around 50 m or more (Figure 11d-11f). This may
explain, at least in part, the validity of previous applications of the Peano network to drainage basins repre-
sented by standard DEMs (i.e., not based on lidar surveys) with grid cell sizes h on the order of 50 m or
more [Marani et al., 1991; Flammini and Colaiori, 1996; Troutman and Over, 2001; Veitzer and Gupta, 2001;
Tay et al., 2006]. The results reported in Figures 9d-9f and 11d-11f indicates that more robust estimates of
D with varying h are obtained by using the threshold for channel initiation on A in preference to AS? and
o*. Even by changing the threshold values of AS? and w* with h as suggested in Orlandini et al. [2011], the
values of D obtained by using these two thresholds are found to increase as h decreases, an evidence that
needs to be investigated in future morphometric studies and to be acknowledged in distributed catchment
modeling.

5. Conclusions

The ability of the average junction degree (k,) and of the uniformity factor y to relate grid, channel, and
Peano networks was investigated in high-resolution digital elevation models over different grid cell sizes h
and thresholds for channel initiation (Figures 6-11). Grid networks extracted from real topographic data dis-
play mostly values of y greater than the value 2 of the Peano grid network (Figures 8 and 9), indicating
greater values of (k,) in the preasymptotic range of Strahler orders and thus smaller fractions of exterior
(source) nodes than Peano grid networks (Figure 8a). The average values of y displayed by real grid net-
works show a defined trend only for small values of h, with differences from the value 2 that slightly
increases as h decreases (Figure 10a). All the grid networks examined display the same trend of drainage
density D with h, an occurrence that can be explained by Tucker et al.'s [2001] relation D=1/(2L) with mean
hillslope-to-channel length L ~ h/2 (Figures 8b and 10b).

Channel networks extracted from real topographic data by using thresholds for channel initiation on
drainage area A, area-slope function AS? and Strahler order w* display both values y > 2 and y < 2,
revealing that these channel networks do not necessarily display smaller fractions of exterior nodes
with respect to the corresponding Peano channel networks (Figures 9a-9¢, 11a-11c). The values of D
displayed by real channel networks are found to vary significantly across different geographical areas
(Figures 9d-9f). The average values of D over the real drainage basins display, however, well-defined
trends with h, indicating that D assumes the same value as the Peano channel network for small val-
ues of h around 1-2 m, and the same value as the Peano grid network for large values of h around
50 m or more (Figure 11d-11f).

The results obtained indicate that the topological relation between real and Peano networks may not vary
over a wide range of grid cell sizes and threshold conditions for channel initiation. Real and Peano networks
are however found to be morphometrically equivalent in terms of drainage density only for specific grid
cell sizes, which may depend on the selected threshold for channel initiation. Future research is therefore
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suggested on morphometric relations between grid, channel, Peano networks in high-resolution digital ele-
vation models, so as to advance the understanding of those flow and transport processes for which network
topology in not the key determinant.

Appendix A: Numbers of Nodes and Segments in the Peano Network

The Peano network having a generic order Q can be constructed through the iterative procedure sketched
in Figure 3. If we indicate with sq and ng the numbers of segments and nodes, respectively, in the Peano
network having order Q, we can easily obtain the recursive relations

So+1=S0+350=450 (A1)
and
Ng+1=nq+3sq, (A2)

where sq+1 and no+4 are the numbers of segments and nodes, respectively, in the Peano network having order
Q+1. The number ng) of exterior nodes (including the source and outlet nodes) satisfies the recursive relation

ngﬂr1 =n(§f) +2sq, (A3)
whereas the number ng) of interior nodes satisfies the recursive relation

ng) =ng)71 +50_1. (A4)

Equations (A1)-(A4) are first-order Iinear difference equations that can be solved by incorporating the initial
conditions s1=1, n;=2, nge) =2, and ng') =1 to give

so=4%"1 (AS)
ne=4%"+1, (A6)
ng>=§< Q2_1)44, (A7)
and
ng):%mﬂ” -1), (A8)

respectively [Elaydi, 2005]. The validity of equations (A5)-(A8) can be proved by using an induction on the
order Q.

Appendix B: Lengths of Segments in Peano Networks

As reported in section 2.4, the maximum order Q of a Peano grid network is related to the exponent n in
the grid domain size through the relation

Q=n+1. (B1)
Therefore, Q does not depend on the grid cell size h, but only on the grid domain size n. Differently, the

lengths Lg) and LQ of the exterior and interior segments, respectively, depend on the grid cell size h. These
quantities are expressed by the relationships

(¢)
n
L= —-hv2 (82)

and

L=l —1)hv2, (B3)

where ng) and ng) are given by equations (A7) and (A8), respectively. The total length Lg> of segments of
all orders is given by
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L) =18 +1Y), (B4)
where Lg) and Lg) are given by equations (B2) and (B3), respectively.

As reported in section 2.4, Peano channel networks can be extracted from Peano grid networks by imposing
a threshold on the drainage area A or on the Strahler order w*. The threshold value A; can be expressed as

A=4"h?, (B5)

where the exponent m is a fixed integer between 1 and Q. If m is fixed, then the maximum order Qc of the
Peano channel network is obtained by the equation

Qc=Q—m. (B6)

The lengths LSC) and Lg)c of the exterior and interior segments, respectively, are expressed by the
relationships

(e)
n
Ly = %h\/?r(z’"%)h\/i (B7)
and
Ly =2 (ny) —1)hV2, (88)

where ngg and ngi are given by equations (A7) and (A8). The total length ng of segments of all orders is
given by

Ly)=LS)+Lg) (89)

where ng and Lg)c are given by equations (B7) and (B8), respectively.

If the threshold value oy is fixed, then the maximum order Qc of the Peano channel network is obtained by
the equation

QC=Q—CL):. (B10)

The lengths LSC) and Lg)c of the exterior and interior segments, respectively, are expressed by the
relationships

LY =(2% =1/2)nhv/2 (B11)
and

Ly =2% (ng. —1)hV2, (812)
where ”Sc) and ng)c are given by equations (A7) and (A8), respectively. The total length ng of segments of

all orders is given by

Ly =Lg)+Ly), (B13)

where LSC) and Lg)c are given by equations (B11) and (B12), respectively.

References

Albert, R, and A. L. Barabasi (2002), Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47-97.

Bertuzzo, E., A. Maritan, M. Gatto, |. Rodriguez-Iturbe, and A. Rinaldo (2007), River networks and ecological corridors: Reactive transport on
fractals, migration fronts, hydrochory, Water Resour. Res., 43, W04419, doi:10.1029/2006WR005533.

Bertuzzo, E., S. Azaele, A. Maritan, M. Gatto, |. Rodriguez-Iturbe, and A. Rinaldo (2008), On the space-time evolution of a cholera epidemic,
Water Resour. Res., 44, W01424, doi:10.1029/2007WR006211.

Bertuzzo, E., R. Casagrandi, M. Gatto, |. Rodriguez-lturbe, and A. Rinaldo (2010), On spatially explicit models of cholera epidemics, J. R. Soc.
Interface, 7, 321-333.

Bras, R. L. (1990), Hydrology: An Introduction to Hydrologic Science, Addison-Wesley, Reading, Mass.

Camporese, M., C. Paniconi, M. Putti, and S. Orlandini (2010), Surface-subsurface flow modeling with path-based runoff routing, boundary
condition-based coupling, and assimilation of multisource observation data, Water Resour. Res., 46, W02512, doi:10.1029/
2008WR007536.

DE BARTOLO ET AL.

GRID, CHANNEL, AND PEANO NETWORKS 3544


http://dx.doi.org/10.1029/2006WR005533
http://dx.doi.org/10.1029/2007WR006211
http://dx.doi.org/10.1029/2008WR007536
http://dx.doi.org/10.1029/2008WR007536

@AG U Water Resources Research 10.1002/2015WR018076

Campos, D., J. Fort, and V. Méndez (2006), Transport on fractal river networks: Application to migration fronts, Theor. Popul. Biol., 69, 88-93.

De Bartolo, S., F. Dell’Accio, and M. Veltri (2009), Approximations on the Peano river network: The case of low connections applying the
Horton-Strahler hierarchy, Phys. Rev. E, 79, 026108.

De Bartolo, S. G,, S. Gabriele, and R. Gaudio (2000), Multifractal behaviour of river networks, Hydrol. Earth Syst. Sci., 4(1), 105-112.

De Bartolo, S. G., R. Gaudio, and S. Gabriele (2004), Multifractal analysis of river networks: Sandbox approach, Water Resour. Res., 40,
W02201, doi:10.1029/2003WR002760.

De Bartolo, S. G., L. Primavera, R. Gaudio, A. D'lppolito, and M. Veltri (2006a), Fixed-mass multifractal analysis of river networks and braided
channels, Phys. Rev. E, 74, 026101.

De Bartolo, S. G., L. Primavera, and M. Veltri (2006b), Estimated generalized dimensions of river networks, J. Hydrol., 322, 181-191, doi:
10.1016/j.jhydrol.2005.02.033.

Dekking, F. M. (1991), Construction of fractals and dimension problems, in Fractals: Non-Integral Dimensions and Applications, edited by
G. Cherbit, 94 pp., John Wiley, N. Y.

Dodds, P., and D. Rothman (1999), Unified view of scaling laws for river networks, Phys. Rev. E, 59(5), 4865-4877.

Elaydi, S. N. (2005), An Introduction to Difference Equations, Springer, Berlin.

Flammini, A., and F. Colaiori (1996), Exact analysis of the Peano basin, J. Phys. A: Math. Gen., 29, 6701-6708.

Gaudio, R, S. G. De Bartolo, L. Primavera, S. Gabriele, and M. Veltri (2006), Lithologic control on the multifractal spectrum of river networks,
J. Hydrol., 327, 365-375, doi:10.1016/j.jhydrol.2005.11.025.

Giusti, E,, and W. J. Schneider (1965), The distribution of branches in river networks, U.S. Geol. Surv. Prof. Pap., 422-G, 10 pp.

Helmlinger, K., P. Kumar, and E. Foufoula-Georgiou (1993), On the use of digital elevation model data for Hortonian and fractal analyses of
channel networks, Water Resour. Res., 29(8), 2599-2613.

Horton, R. E. (1932), Drainage basin characteristics, Eos Trans. AGU, 13, 350-361.

Horton, R. E. (1945), Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology,
Geol. Soc. Am. Bull., 56(3), 275-370.

Howard, A. D. (1971), Optimal angles of stream junction: Geometric, stability to capture, and minimum power criteria, Water Resour. Res.,
7(4), 863-873.

Howard, A. D. (1990), Theoretical model of optimal drainage networks, Water Resour. Res., 26(9), 2107-2117.

Kirchner, J. W. (1993), Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks, Geology, 21, 591-
594,

La Barbera, P., and R. Rosso (1989), On the fractal dimension of steam networks, Water Resour. Res., 25(4), 735-741.

Mandelbrot, B. (1977), Fractals: Form, Chance and Dimension, 365 pp., W. H. Freeman, N. Y.

Marani, A,, R. Rigon, and A. Rinaldo (1991), A note on fractal channel networks, Water Resour. Res., 27(12), 3041-3049.

Montgomery, D. R, and J. M. Buffington (1997), Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bull., 109(5), 596-611.

Montgomery, D. R., and W. E. Dietrich (1988), Where do channels begin?, Nature, 336(6196), 232-234.

Newman, M. E. J. (2003), The structure and function of complex networks, SIAM Rev., 45, 167-256.

O’Callaghan, J., and D. M. Mark (1984), The extraction of drainage networks from digital elevation data, Comput. Vis. Graph. Image Processes,
28(3), 323-344.

Orlandini, S., and G. Moretti (2009), Determination of surface flow paths from gridded elevation data, Water Resour. Res., 45, W03417, doi:
10.1029/2008WR007099.

Orlandini, S., G. Moretti, M. Franchini, B. Aldighieri, and B. Testa (2003), Path-based methods for the determination of nondispersive drain-
age directions in grid-based digital elevation models, Water Resour. Res., 39(6), 1144, doi:10.1029/2002WR001639.

Orlandini, S., P. Tarolli, G. Moretti, and G. Dalla Fontana (2011), On the prediction of channel heads in a complex alpine terrain using
gridded elevation data, Water Resour. Res., 47, W02538, doi:10.1029/2010WR009648.

Orlandini, S., G. Moretti, and A. Gavioli (2014), Analytical basis for determining slope lines in grid digital elevation models, Water Resour.
Res., 50, 526-539, doi:10.1002/2013WR014606.

Peckham, S. D. (1995a), Self-similarity in the three-dimensional geometry and dynamics of large river basins, PhD thesis, Univ. of Colorado,
Boulder.

Peckham, S. D. (1995b), New results for self-similar trees with applications to river networks, Water Resour. Res., 31(4), 1023-1029.

Perron, J. T, P. W. Richardson, K. L. Ferrier, and M. Lapotre (2012), The root of branching river networks, Nature, 492, 100—104, doi:10.1038/
nature11672.

Pirotti, F., and P. Tarolli (2010), Suitability of LIDAR point density and derived landform curvature maps for channel network extraction,
Hydrol. Processes, 24(9), 1187-1197, doi:10.1002/hyp.7582.

Rigon, R., A. Rinaldo, I. Rodriguez-Iturbe, E. ljjasz-Vasquez, and R. L. Bras (1993), Optimal channel networks: A framework for the study of
river basin morphology, Water Resour. Res., 29(6), 1635-1646.

Rinaldo, A., I. Rodriguez-lturbe, R. Rigon, R. L. Bras, E. ljjasz-Vasquez, and A. Marani (1992), Minimum energy and fractal structures of drain-
age networks, Water Resour. Res., 28(9), 2183-2195.

Rinaldo, A., I. Rodriquez-lturbe, and R. Rigon (1998), Channel networks, Annu. Rev. Earth Planet. Sci., 26, 289-327.

Rinaldo, A, J. R. Banavar, and A. Maritan (2006), Trees, networks, and hydrology, Water Resour. Res., 42, W06D07, doi:10.1029/
2005WR004108.

Rodriguez-lturbe, ., and A. Rinaldo (1997), Fractal River Networks: Chance and Self-Organization, 547 pp., Cambridge Univ. Press, New York.

Shreve, R. L. (1966a), Statistical law of stream numbers, J. Geol., 74, 17-37.

Shreve, R. L. (1966b), Stream lengths and basin areas in topologically random channel networks, J. Geol., 77, 397-414.

Shreve, R. L. (1967), Infinite topologically random channel networks, J. Geol., 75, 178-186.

Sibson, R. (1981), A brief description of natural neighbor interpolation, in Interpreting Multivariate Data, edited by V. Barnett, pp. 21-36,
John Wiley, Chichester.

Strahler, A. N. (1952), Hypsometric (area-altitude) analysis of erosional topology, Geol. Soc. Am. Bull., 63(11), 1117-1142.

Strahler, A. N. (1957), Quantitative analysis of watershed geomorphology, Trans. AGU, 8(6), 913-920.

Strahler, A. N. (1958), Dimensional analysis applied to fluvially eroded landforms, Geol. Soc. Am. Bull., 69, 279-300.

Tarboton, D. G. (1997), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water
Resour. Res., 33(2), 309-319.

Tarboton, D. G, R. L. Bras, and |. Rodriguez-Iturbe (1988), The fractal nature of river networks, Water Resour. Res., 24(8), 1317-1322.

Tarboton, D. G., R. L. Bras, and I. Rodriguez-Iturbe (1991), On the extraction of channel networks from digital elevation data, Hydrol. Proc-
esses, 5, 81-100.

DE BARTOLO ET AL.

GRID, CHANNEL, AND PEANO NETWORKS 3545


http://dx.doi.org/10.1029/2003WR002760
http://dx.doi.org/10.1016/j.jhydrol.2005.02.033
http://dx.doi.org/10.1016/j.jhydrol.2005.11.025
http://dx.doi.org/10.1029/2008WR007099
http://dx.doi.org/10.1029/2002WR001639
http://dx.doi.org/10.1029/2010WR009648
http://dx.doi.org/10.1002/2013WR014606
http://dx.doi.org/10.1038/nature11672
http://dx.doi.org/10.1038/nature11672
http://dx.doi.org/10.1002/hyp.7582
http://dx.doi.org/10.1029/2005WR004108
http://dx.doi.org/10.1029/2005WR004108

@AG U Water Resources Research 10.1002/2015WR018076

Tay, L. T., B. S. D. Sagar, and H. T. Chuah (2006), Allometric relationships between traveltime channel networks, convex hills, and convexity
measures, Water Resour. Res., 42, W06502, doi:10.1029/2005WR004092.

Taylor, J. R. (1997), An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, Univ. Sci. Books, Sausalito, Calif.

Troutman, B. M., and T. M. Over (2001), River flow mass exponents with fractal channel networks and rainfall, Adv. Water Resour., 24,
967-989.

Tucker, G. E,, F. Catani, A. Rinaldo, and R. L. Bras (2001), Statistical analysis of drainage density from digital terrain data, Geomorphology,
36(3-4), 187-202.

Veitzer, S. A, and V. K. Gupta (2001), Statistical self-similarity of width function maxima with implications to floods, Adv. Water Resour., 24,
955-965.

Veneziano, D., G. E. Moglen, P. Furcolo, and V. V. lacobellis (2000), Stochastic model of the width function, Water Resour. Res., 36(4),
1143-1157.

Willgoose, G., R. L. Bras, and I. Rodriguez-lturbe (1991a), Results from a new model of river basin evolution, Earth Surf. Processes Landforms,
16, 237-254.

Willgoose, G., R. L. Bras, and . Rodriguez-lturbe (1991b), A coupled channel network growth and hillslope evolution model: 1. Theory, Water
Resour. Res., 27(7), 1671-1684.

Willgoose, G., R. L. Bras, and |. Rodriguez-lturbe (1991c), A coupled channel network growth and hillslope evolution model: 2. Nondimen-
sionalization, Water Resour. Res., 27(7), 1685-1696.

Willgoose, G., R. L. Bras, and I. Rodriguez-Iturbe (1991d), A physical explanation of an observed link area-slope relationship, Water Resour.
Res., 27(7), 1697-1702.

Yang, D., S. Herath, and k. Musiake (2001), Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydro-
logical simulation, Hydrol. Processes, 15, 2085-2099.

DE BARTOLO ET AL.

GRID, CHANNEL, AND PEANO NETWORKS 3546


http://dx.doi.org/10.1029/2005WR004092

	l
	l
	l
	l
	l
	l
	l
	l
	l
	l

